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Interface-capturing methods for two-phase flows:
An overview and recent developments

By S. Mirjalili, S. S. Jain AND M. S. Dodd

1. Motivation and objectives

Two-phase flows are of great interest in natural and industrial applications such as
rain formation (Shaw 2003), breaking waves (Melville 1996), spray atomization (Sirig-
nano 1999) and bubbly flows (Sato et al. 1981; Clift et al. 2005). The purpose of this
report is to survey the available interface-capturing methods for two-phase flows and to
present them in a consistent fashion to facilitate comparison. We highlight the outstand-
ing issues and challenges in two-phase flow modeling and discuss the relative advantages
and disadvantages of the various interface-capturing methodologies. The literature on
these methods continues to grow in an almost intractable manner. Hence, we will focus
on interface-capturing methodologies that are currently in use and being actively devel-
oped by the two-phase community. Moreover, within different categories, we will only
chronologically review milestones while alluding to the state of the art or most promising
research directions. We apologize beforehand if we have overseen major contributions.
Hopefully, this work can serve as an update/overview to veterans of the two-phase com-
munity while also guiding new researchers of the field in choosing a two-phase flow solver
best suited for their applications. All conclusions and recommendations in this work
are qualitative; quantitative comparison between different two-phase flow categories or
methods would be complementary to this work.

2. Overview and challenges

Within the computational modeling community, problems involving two fluid phases
are referred to as two-phase flows; whereas, multiphase flows consist of a broader cat-
egory of problems including particle-laden flows. For the scope of this report, we will
only concern ourselves with immiscible two-phase flows. While analytical studies of such
flows date back to the 19th century (e.g., Plateau 1873), the scope of analytical work,
even for the simplest problems, is often very limited. Experimental observations of real-
istic applications are also very difficult, as many of the experimental techniques cannot
be extended to two-phase flows (Prosperetti & Tryggvason 2009). This motivates the
development of accurate, physically consistent and cost-effective numerical methods for
capturing the interface and coupling it to the momentum conservation equation. Un-
fortunately, constructing such methods is a difficult task given the challenges presented
by two-phase flows. These challenges include, but are not limited to (1) enforcing mass,
momentum and kinetic energy conservation, (2) modeling discontinuities in properties
across the interface, especially large jumps in density, (3) handling complex topologies
and separation of scales, (4) achieving robustness for simulation of realistic flows, (5)
accurately implementing surface tension forces.

Different two-phase modeling classes and their prominent methods are demonstrated
in Figure 1, where we have highlighted with ellipses the classes and methods that are
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currently of most interest in the community and are examined in this work. In this Fig-
ure, diffuse-interface approaches are also distinguished from sharp-interface approaches
by gray background colors. While two-fluid models are found to be applicable for simple
problems, they have been found to be unsuitable for realistic scenarios (Prosperetti &
Tryggvason 2009). We refer the reader to Ishii & Hibiki (2010) and Prosperetti & Tryg-
gvason (2009) for comprehensive discussions on two-fluid models. Moreover, for those
interested in marker-and-cell (MAC) and front-tracking methods, detailed discussions
are presented in McKee et al. (2008) and Tryggvason et al. (2011) respectively. The
lattice Boltzmann method (LBM), smoothed-particle hydrodynamics (SPH) and con-
strained interpolation profile (CIP) are also left out of this report. As one can see from
Figure 1, the interface-capturing methods of choice for this work (ellipses in Figure 1) all
belong to the one-fluid formulation of two-phase modeling approaches. These methods
are the volume-of-fluid (VOF), level-set (LS) and phase-field (PF) methods. For these
classes of methods, we will first introduce them and their different variants and then de-
scribe the most influential versions and seek to update the reader on the current status
of each class.

We refer the reader to Tryggvason et al. (2011) for an introduction to governing equa-
tions for two-phase flows in the one-fluid model. We will only consider incompressible
flows herein. Before going through the interface-tracking methods, we should emphasize
that in coupling any of the above methods with the momentum equation in nonconser-
vative form

∂u

∂t
+∇ · (u⊗ u) =

1

ρ

{
−∇P +∇ ·

[
µ(∇u +∇Tu)

]
+ FST

}
, (2.1)

or in conservative form, as in

∂(ρu)

∂t
+∇ · (ρu⊗ u) = −∇P +∇ ·

[
µ(∇u +∇Tu)

]
+ FST , (2.2)

there are many considerations for modeling the surface tension force , FST . In addition,
apart from how density and viscosity are calculated, some extra care must be taken
for discretization of the momentum fluxes. We expand upon these rather fundamental
notions in the following section.

3. Momentum equation discretization in one-fluid models

Any interface-capturing method would be coupled to the momentum equation through
the computation of local density, viscosity and surface tension forces. In sharp-interface
approaches, the density and viscosity values experience a jump across the interface, while
in diffuse-interface approaches, these scalar fields are functions (often linear) of the local
phase indicator function.

Surface tension forces can be discretely implemented as stresses or body forces, often
known as integral and volumetric formulations respectively. An important requirement
for two-phase flow solvers is the discrete balance of the surface tension and pressure
gradient terms (François et al. 2006). Integral formulations have yet to achieve this re-
quirement, but have the advantage of automatic momentum conservation (zero total force
on a closed surface). On the other hand, volumetric formulations have been successful at
attaining this discrete balance. All in all, a well-balanced, momentum-conserving surface
tension force formulation does not currently exist (Popinet 2018). Generally speaking,
the volumetric formulation has been much more popular within the existing literature.
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LBM SPH Two-fluid One-fluid
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Figure 1. Classification of numerical methods for two-phase flows. The interface-capturing
methods, covered in the present work, are marked by ellipses. Methods that use a sharp-interface
approach have a white background while diffuse-interface approaches have a gray background.
Abbreviations are defined in the main text.

Popinet (2018) observed that all well-known volumetric formulations, including the orig-
inal continuous surface force (CSF, Brackbill et al. 1992), ghost-fluid method (GFM,
Fedkiw et al. 1999) and smoothed Heaviside method (Sussman et al. 1994) can be writ-
ten in the form FST = σκδsn, which is commonly known as the CSF formulation,
where σ is the surface tension and δs is a numerical Dirac delta function specific to each
method. Therefore, a critical component of different surface tension calculation meth-
ods is the accuracy of calculating the normal vector (n) and curvature (κ). A common
approach has been to compute normal vectors from spatially differentiating a smooth
field (sometimes by a smoothening kernel), and subsequently taking the divergence of
the normal vectors to obtain curvatures. In some sharp interface approaches (e.g., VOF),
a smooth field is not readily available. Therefore, in recent years many new codes using
sharp-interface approaches have employed height-functions for more accurate estimation
of normals and/or curvatures (Sussman & Ohta 2009; Popinet 2009; Owkes & Desjardins
2015; Ivey & Moin 2015). Although height-functions can be very attractive in terms of
accuracy, convergence and momentum conservation properties, their accuracy and ro-
bustness suffers at low resolutions, specifically when κ∆x > 1/5 (Popinet 2018). Thus,
robust implementation of these methods is not straightforward and entails a smooth
transition to alternative techniques such as parabolic reconstruction of surface tension
(PROST), introduced in Renardy & Renardy (2002). The PROST method has been ex-
tended to unstructured meshes by Evrard et al. (2017). Their method can be interpreted
as a generalization of the height-function method, and it converges with the same order
of accuracy as height-function techniques. However, to date, it has only been applied



120 Mirjalili, Jain & Dodd

to two-dimensional unstructured meshes due to additional challenges and complexity
presented in three dimensions.

A discussion on numerical implementation of surface tension is incomplete without the
mention of spurious currents. These artificial flows can be detrimental in practical two-
phase flows, leading to artificial generation of kinetic energy and heat transfer (Hardt
& Wondra 2008; Gupta et al. 2009). Accurate direct numerical simulation (DNS) of
turbulent two-phase flows is only possible if the root-mean-squared (r.m.s.) velocity of
the spurious currents is negligible relative to the velocity fluctuations due to turbulence,
as demonstrated recently by Dodd & Ferrante (2016). Accurate curvature estimation
and well-balanced surface tension force discretization are required for reducing spurious
currents. A test case assessing the relative magnitude of these currents is therefore an
essential benchmark for the evaluation of surface tension implementation. Often times,
the magnitude of spurious currents in a static drop test case at a specific time is re-
ported (originally due to Gunstensen 1992). However, improvements to this measure are
necessary as shown by Magnini et al. (2016), for instance, by reporting the history or
time-averaged norm of spurious currents. In addition, these authors suggest examining
spurious currents for a moving drop.

Finally, much progress has been made in recent years towards the goal of discrete
conservation of energy for two-phase flows, particularly at high density ratios. For Carte-
sian staggered grids, a method that discretely conserves kinetic energy in the absence
of viscous dissipation and surface tension forces was presented in Fuster (2013). In gen-
eral, it is now well-established that for accurate and robust simulations at large density
ratios, momentum should be transported conservatively via Eq. (2.2) and also consis-
tently with respect to mass advection (Popinet 2009; Raessi & Pitsch 2012; Chenadec &
Pitsch 2013; Ivey et al. 2016). This correction has been shown to significantly improve
the energy conservation properties of two-phase flow solvers.

4. Volume-of-fluid method

In the class of volume-of-fluid (VOF) methods, the phase indicator function, H(x, t),
is defined as

H(x, t) =

{
1 if x is in the reference fluid,

0 if x is in the other fluid.
(4.1)

In the absence of phase change, each fluid parcel retains its phase indicator value during
its motion. Therefore, the material derivative of H is zero, i.e.

DH

Dt
=
∂H

∂t
+∇ · (uH)−H∇ · u = 0. (4.2)

The volume fraction is defined as the spatial average of the phase indicator function (H)
in each computational cell (Ω),

Ck(t) =
1

V

∫
Ω

H(x, t) dV, (4.3)

where V is the volume of the k-th cell. We then integrate Eq. (4.2) over the computational
cell and use the definition introduced in Eq. (4.3) to obtain

V
∂Ck(t)

∂t
+

∫
∂Ω

(u · n)H(x, t) dS =

∫
Ω

H∇ · u dV. (4.4)
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While in incompressible flows ∇ · u = 0, this term is retained in Eq. (4.4) for reasons
related to numerical implementation that will be explained later. In geometric VOF
methods an approximation to H is found geometrically (e.g., by a plane), whereas in
algebraic VOF methods H is represented by a function (e.g., polynomial or trigonometric
function).

4.1. Geometric VOF

Geometric VOF methods proceed in two steps. First, the interface is reconstructed in
each computational cell from the knowledge of the volume fraction field. Second, the
reconstructed interface is advected by computing the fluxed volume across each compu-
tational cell using geometric methods. In the following, we review the state of the art for
performing these two tasks.

4.1.1. Interface reconstruction

For the first task, the most widely used method is the piecewise linear interface calcu-
lation (PLIC) scheme (Debar 1974). In this approach, the interface is approximated in
each interfacial cell as a line in two dimensions or a plane in three dimensions as

n · x + α = 0, (4.5)

where α is the constant in the plane equation that is selected to enforce that the volume
cut by the interface is equal to Ck in the computational cell. The main choice left to
the user is how to compute the interface normal, n. Youngs’ method (Youngs 1982)
estimates n as a normalized gradient of Ck. This method is fast and performs best
at low resolutions, but at higher resolutions its accuracy decreases from second to first
order. A method that performs better at high resolutions is the centered-columns method
(Scardovelli & Zaleski 2003). An approach that combines the desirable properties at both
low and high resolutions is the mixed Youngs-centered (MYC) method (Aulisa et al.
2007). Pilliod & Puckett (2004) introduced the efficient least-squares volume-of-fluid
interface reconstruction algorithm (ELVIRA) method. On structured Cartesian meshes,
this approach uses a least-squares error minimization to select between normal vector
candidates. Its extension to three dimensional unstructured meshes is more complicated,
but has been accomplished by Jofre et al. (2014). ELVIRA is second-order accurate but
has high computational cost, especially in three dimensions due to an increased number
of normal candidates. For unstructured meshes and general polyhedral cells, Ivey &
Moin (2015) developed an embedded height-function framework to compute second-order
accurate normals. On Cartesian meshes, the MYC method appears to be the preferred
method because of its low cost and relatively high degree of accuracy on structured
meshes, and as such, it has been implemented in several free softwares (e.g., Popinet 2012,
2013; Arrufat et al. 2014). On unstructured meshes, the favored method for computing
interface normals is less clear.

After the normal n has been calculated, the next task is to compute α. For right
hexahedral cells, Scardovelli & Zaleski (2000) presented analytical methods for computing
α. For general polyhedra, a root-finding algorithm is typically employed to find α, for
which VOF-specific libraries exist, e.g., the VOFTools library by López et al. (2017).

4.1.2. Interface advection

The interface is advected by integrating Eq. (4.4) in time. The main decision left to the
user is on how the volume fluxes of the reference fluid are calculated. Two classes of advec-
tion algorithms have emerged: (i) split methods that rely on operator-splitting to perform
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a series of one dimensional advections in each spatial dimension and (ii) unsplit methods,
which advect the interface in one step. Split methods are algorithmically straightforward
to implement compared to multidimensional (unsplit) schemes. Unsplit schemes involve
computation of complex flux polyhedra in computational cells containing the interface.
These computations are expensive and can lead to significant parallel load imbalance if
left untreated (Jofre et al. 2015). On the other hand, unsplit methods have the advan-
tage of only requiring one advection and reconstruction step and are more amenable for
general three-dimensional unstructured meshes. In addition, Pilliod & Puckett (2004)
showed that unsplit methods better resolve interfaces that are non-smooth (i.e. contain
corners). How this increased resolution capability translates into practical applications
(e.g., Prakash et al. 2016; Mortazavi et al. 2016) is an open question.

As previously mentioned, split advection schemes use operator-splitting to decompose
Eq. (4.4) into a series of one dimensional advections. Because terms like ∂u/∂x are
generally non-zero, the right-hand side in Eq. (4.4) is retained. This is in contrast to
unsplit schemes which omit the last term due incompressibility (∇·u). In two dimensions,
the first split advection scheme to satisfy the boundedness condition, 0 ≤ Ck ≤ 1, and
mass conservation in incompressible flow is known as the Eulerian implicit - Lagrangian
explicit (EI-LE) scheme (Tryggvason et al. 2011). Aulisa et al. (2007) extended the EI-LE
scheme to three dimensions by creating EILE-3D. EILE-3D uses a series of three EI-LE
advection steps, one in each spatial direction. This discretely mass-conserving scheme
satisfies the boundedness condition, but has the disadvantage of requiring six advection
and interface reconstruction steps as well as the requirement to compute three two-
dimensional divergence-free velocity fields. Later, Weymouth & Yue (2010) developed
a split advection scheme that consists of three Lagrangian explicit (LE) steps that are
both bounded (0 ≤ Ck ≤ 1) and discretely conservative. The only drawback is that it
introduces an additional CFL restriction to guarantee boundedness of Ck. However, this
restriction is relatively benign. The Weymouth & Yue method is implemented in the free
software Basilisk (Popinet 2013) and PARIS Simulator (Arrufat et al. 2014). Another
method to extend the EI-LE advection scheme to three dimensions was given by Baraldi
et al. (2014). This approach introduces an algebraic step in the third dimension that
ensures mass is discretely conserved. The downside to this is that the algebraic step can
produce overshoots (Ck > 1) or undershoots (Ck < 0), and therefore a redistribution
algorithm is required to ensure boundedness. Further tests of the split advection schemes
which include a cost comparison would be beneficial.

Unsplit VOF advection methods compute and transport the fluxed volume in one step.
Rider & Kothe (1998) proposed one of the first unsplit VOF advection schemes in the
framework of PLIC interface reconstruction. Face centered velocity components were
used to construct trapezoidal flux regions. These flux regions can potentially overlap,
which can ultimately lead to the condition 0 ≤ Ck ≤ 1 not being satisfied exactly.
López et al. (2004) developed a two-dimensional unsplit geometric advection scheme
which used cell vertex velocities instead of edge velocities. This change resulted in no
overlap of flux regions which improved the mass conservation compared to Rider & Kothe
(1998). Owkes & Desjardins (2014) extended the work of López et al. (2004), yielding
a bounded, mass-conserving three-dimensional unsplit VOF advection algorithm. Their
scheme addressed outstanding conservation issues in three-dimensional unsplit methods,
namely how to address flux hexahedra that overlap during the advection step. Jofre
et al. (2014) extended the work of Owkes & Desjardins (2014) to unstructured meshes
and non-convex polyhedra. Ivey & Moin (2017) further advanced the computation of



A review of interface-capturing methods for two-phase flows 123

flux polyhedra on unstructured meshes to yield a discretely conservative and bounded
unsplit advection scheme. It should be noted that all the state of the art unsplit VOF
advection methods use cell vertex velocities to form the flux polyhedra as opposed to edge
velocities. A possible departure from this framework is given by Roenby et al. (2016).
Although the performance and accuracy of this method has not yet been compared to
conventional geometric VOF methods, it offers a potentially more cost-effective approach
to VOF advection on unstructured meshes because it does not require PLIC interface
reconstruction and complex geometric computations of flux volumes.

It is important to note that in VOF advection schemes, discrete mass conservation
is only guaranteed if ∇ · u = 0 is satisfied discretely in every grid cell. In practice,
the condition ∇ · u = 0 is typically only satisfied up to some user-specified tolerance
through the iterative solution of the Poisson equation for pressure. To obtain discrete
conservation of mass to machine precision in every grid cell cost effectively, the Poisson
equation should be solved directly instead of iteratively (Dodd & Ferrante 2014).

4.2. Algebraic VOF

Algebraic VOF (AVOF) methods are probably one of the oldest classes of interface-
capturing methods and the first of the VOF-type methods (Hirt & Nichols 1981). In
these methods, the volume fraction, C, is obtained via Eq. (4.4) with a numerical ap-
proximation (volume-averaged, polynomial or hyperbolic-tangent representation) for the
phase indicator function, H. These methods compute the fluxes algebraically without
the need for geometric reconstruction of the interface, hence the name. Broadly, alge-
braic VOF methods can be classified into two categories based on the approach used to
compute the fluxes, (a) compressive class and (b) THINC class (tangent of hyperbola for
interface capturing).

4.2.1. Compressive schemes

Compressive schemes use the information of the orientation of the interface (interface
normal) with respect to the cell face and compute the face flux, Ff , for the VOF function
as

Ff = γ(θ)FHRS + [1− γ(θ)]FHDS, (4.6)

where FHRS is the flux computed using a high-resolution scheme and FHDS is the flux
computed using a high-order downwinding scheme, γ is a blending function and θ is
the angle between the cell face normal and the interface normal – defining the orienta-
tion of the interface with respect to the cell face. To expand on this, when computing
fluxes across each face, if the interface normal is aligned along the cell face normal, a
HDS scheme is used, whereas when the interface normal is perpendicular to the cell face
normal a HRS scheme is used and for all the intermediate situations a combination of
these two schemes is employed depending on the choice of the blending function. Among
various compressive methods such as high resolution interface capturing scheme (HRIC)
(Muzaferija et al. 1998), compressive interface capturing scheme for arbitrary meshes (CI-
CSAM) (Ubbink & Issa 1999), switching technique for advection and capturing of surfaces
(STACS) (Darwish & Moukalled 2006), high-resolution artificial compressive formulation
(HiRAC) (Heyns et al. 2013) and modified-CICSAM (M-CICSAM), M-CICSAM is bet-
ter than HRIC, STACS and CICSAM (Zhang et al. 2014), whereas a comparison between
HiRAC and M-CICSAM is yet to be made. Unfortunately, the accuracy of compressive
algebraic VOF methods is generally found to be about an order of magnitude lower than
the state of the art geometric VOF methods, and is also found to depend on the local cell
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Courant number. Additionally, to avoid the diffusion of the interface when the interface
gets deformed in flows with high strain rates, an artificial interface sharpening term is
typically added to the right-hand side of Eq. (4.4).

4.2.2. THINC schemes

THINC schemes (Xiao et al. 2005) are a group of relatively new methods within alge-
braic VOF where a hyperbolic-tangent profile is assumed for the phase indicator function
(H) within the cell containing the interface, and the fluxes are computed algebraically
according to this assumption from Eq. (4.4). According to claims by Xie et al. (2014), the
accuracy of these methods can be close to geometric VOF methods at lesser cost. Hence,
THINC schemes are gaining popularity these days. Moreover, unlike the compressive
schemes introduced in Section 4.2.1, these methods do not require artificial compression
and are independent of the local cell Courant number. However, more rigorous studies
on the comparison of the cost of these methods in three-dimensions - UMTHINC (Ii
et al. 2014; Xie et al. 2014) against the state of the art geometric VOF methods are
warranted. Flux limiters, such as the multidimensional universal limiter with explicit
solution (MULES) can also be used to advect the color function algebraically, but the
accuracy of these methods is not on par with either the THINC class or the latest com-
pressive class methods (Roenby et al. 2016). Overall, the performance of all the algebraic
VOF methods have yet to be rigorously tested for large-scale realistic simulations.

5. Level-set methods

Level set methods were first developed and used in the context of computer graphics
and image processing (Sethian 1999). They were extended to the case of two-phase flows
by Sussman et al. (1994). A traditional level set function is a signed-distance function
φ(x, t), that represents the shortest distance to the interface. These methods solve the
advection equation

∂φ

∂t
+ u · n|∇φ| = 0, (5.1)

to update φ at every time step and are commonly discretized with a Hamilton-Jacobi
weighted essentially non-oscillating (HJ-WENO) type scheme in space and a total vari-
ation diminishing Runge-Kutta (TVD-RK) scheme in time. Sadly, φ loses its signed-
distance property after the advection step, and hence needs to be reinitialized.

Level set methods offer many advantages over other methods such as: (1) accurate
computation of normals and curvature using n = ∇φ/|∇φ| and κ = ∇ · n, due to
smoothness of the φ field and (2) straightforward extensions to Cartesian adaptive mesh
refinement (AMR). However, the biggest disadvantage of these methods is the fact that
mass of each phase is not conserved, a crucial requirement for numerical modeling of
realistic two-phase flows. While there are multiple fixes to limit the mass loss as described
in Section 5.2, this problem cannot be eliminated completely.

5.1. Reinitialization

The conventional approach to reinitialize φ is to compute the interface location (φ = 0)
and to recompute the distance to the interface at all other points. However, this method
was found to be too expensive with a complexity of O(N3) and was found to distort the
interface. Hence, Sussman et al. (1994) proposed a PDE based reinitialization method

φτ = sgn(φ0)(|∇φ| − 1) = 0, (5.2)
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where sgn is a smoothed signum function. Reinitialization of φ can also be performed by
solving the Eikonal equation of the form

||∇φ|| = 1. (5.3)

Fast numerical methods such as the fast-marching method (FMM) (Chopp 2001) and the
fast-sweeping method (FSM) (Zhao 2005) have been developed to solve this equation.
FMM uses a heap structure to store and order the grid points where the Eikonal equation
is solved and has a complexity of O(N logN), whereas the FSM uses Gauss-Seidel iter-
ations with alternating sweeping orderings and hence the number of sweeps is bounded:
2n for Rn with a complexity of O(N). These methods seem attractive due to their low
cost and reduced mass-loss error with the use of higher-order extensions; however, there
is an inherent difficulty in scalable parallel implementation of these methods due to load-
balancing issues and the requirement of high number of iterations in the regions where
the characteristics cross the sub-domain multiple times.

5.2. Mass-loss corrections

The PDE based reinitialization method proposed by Sussman et al. (1994) was found to
move the interface location (φ = 0) significantly, resulting in mass loss. Russo & Smereka
(2000) came up with a sub-cell fix, wherein they used the location of the interface in
computing the fluxes with second-order accuracy for cells containing the interface. This
approach was further extended to fourth-order accuracy by du Chéné et al. (2008). In
a different approach, Enright et al. (2002) proposed a hybrid particle level set method
(HPLS), wherein they seed the interface with particles, and employ algorithms to attract
them towards the interface and to correct φ when the particles cross the interface. With
this approach, they found that the mass loss reduced from 80% to 2.6% for the case
of a three-dimensional drop in shear flow. Some researchers have also successfully taken
advantage of the fact that the mass conservation error reduces with mesh refinement. For
instance, Herrmann (2008) solves the level-set equations on an auxiliary high-resolution
grid, while Gibou et al. (2018) highly refine the regions close to the interface via AMR.

While these methods successfully reduce the mass-loss error, the simplicity of the
level-set method is generally lost, and they still do not achieve discrete mass conservation.
Hence, level-set methods based on the signed-distance function are becoming less popular
in the two-phase community compared to other mass-conserving methods. Nevertheless,
the numerical tools developed for these methods, such as FMM and FSM, are being
actively employed within other classes of methods (see Section 5.3).

5.3. Conservative level-set method

In an attempt to tackle the conservation issues of the level-set method, the conservative
level-set method was introduced by Olsson & Kreiss (2005), replacing the sharp interface
between two immiscible phases with a diffuse profile that takes the form of

φ(x) = 0.5

{
1 + tanh

[
s(x)

2ε

]}
, (5.4)

where x is the position, s(x) is the signed distance function, ε controls the interface
thickness, and φ varies from 0 to 1. In that seminal paper, φ is advected as

∂φ

∂t
+∇ · (uφ) = 0. (5.5)
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Afterwards, the reinitialization step, defined as

∂φ

∂τ
= ∇ · [ε∇φ− φ(1− φ)n] , (5.6)

is integrated in pseudo-time, τ , till convergence, where n = ∇φτ=0/ |∇φτ=0| and second-
order central-differences are used for all spatial derivatives. The advection and reinitial-
ization steps are coupled to a momentum transport step where density and viscosity are
linear functions of φ, and surface tension is computed in a CSF formulation. Compared
to volume-of-fluid and traditional level-set methods, this mass-conserving scheme is easy
to implement and an extension to unstructured three-dimensional grids can be found in
Balczar et al. (2014). In Olsson et al. (2007), the reinitialization equation is modified by
projecting the diffusive flux in the normal direction,

∂φ

∂τ
= ∇ · {[ε(∇φ · n)− φ(1− φ)]n} , (5.7)

which reduces the errors brought by tangential fluxes during reinitialization using Eq. (5.6).
These equations, which are commonly referred to as the original conservative level-set
method, are mass conserving as

∫
V
φdV is conserved. Moreover, straightforward com-

putation of the normal and curvature values is possible due to the smooth nature of φ.
However, the numerical solution of Eq. (5.7) is susceptible to dispersion errors. Thus, in
order to restrict oscillations in the normal vector and keep φ bounded, TVD schemes have
to be employed which result in numerical dissipation. Moreover, high levels of reinitializa-
tion using Eq. (5.7) have been shown to result in artificial deformation of the interface,
even if the normal vector is exact (McCaslin & Desjardins 2014). Wac lawczyk (2015)
rectified this issue by taking advantage of the distance level set to find a reinitialization
equation consistent with the traditional level-set reinitialization equation, Eq. (5.2), as

∂φ

∂τ
= ∇ · [φ(1− φ)(|∇φmap · n| − 1)n], (5.8)

where φmap = εln(φ/(1− φ)) is the distance level-set function and the normal vector
is n = ∇φmap,τ=0/

∣∣∇φmap,τ=0

∣∣. This approach still requires TVD advection for ro-
bustness. Chiodi & Desjardins (2017) recently combined the reinitialization equation of
Wac lawczyk (2015) with the accurate conservative level-set (ACLS) method introduced
first in Desjardins et al. (2008). They reformulated the reinitialization equation in a form
that remains conservative and is not subject to large errors at high levels of reinitializa-
tion while allowing for non-TVD high-order transport of φ. This is possible by computing
the normal vectors from the reconstructed level-set function, obtained using FMM (as
in Desjardins et al. 2008). Furthermore, they modify the reinitialization equation in the
form

∂φ

∂τ
= ∇ ·

[
1

4cosh2 [φmap/(2ε)]
(|∇φmap · n| − 1)n

]
, (5.9)

to be insensitive to the bounds of φ. Chiodi & Desjardins (2017) follows the ACLS
approach by using a sharp description of the interface, hence also incurring mass conser-
vation errors which are albeit much smaller than traditional level-set schemes. Moreover,
based on run-times reported for a two-phase jet calculation, the cost of Chiodi & Des-
jardins (2017) is much larger than the original CLS schemes. Finally, we should emphasize
that in the continuous limit, the right-hand side of Eqs. (5.6) – (5.9) do not displace the
φ = 0.5 contour which represents the interface. This is a necessary requirement for any
valid reinitialization technique.
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6. Phase-field methods

The hyperbolic tangent shape of the interface in conservative level-set methods, Eq. (5.4),
resembles the thermodynamically derived equilibrium profile in phase-field methods. In
this class of methods, the transport equation governing the phase indicator is modified
by incorporating physical effects that govern thin interfaces. Although in realistic im-
miscible two-phase flow applications, the physical thickness of the interface is practically
impossible to resolve numerically, these methods offer some desirable properties that have
attracted the interest of two-phase flow modelers in recent years (Anderson et al. 1998;
Badalassi et al. 2003; Ding et al. 2007). Traditionally, phase-field methods were either
based on the Cahn-Hilliard or the Allen-Cahn equations, which are two important gradi-
ent flows of the Ginzburg-Landau-Wilson free energy functional. In a bounded physical
domain given by Ω, this energy functional is defined on the H1(Ω) space in the form

F : H1(Ω)→ [0,∞], F (φ) =
1

2

∫
Ω

ε2|∇φ|2dV +

∫
Ω

W (φ)dV , (6.1)

where φ = −1 and φ = +1 represent the pure phases and W (s) = (1 − s2)2/4 is the
mathematically approximated double-well potential.

The Allen-Cahn equation is essentially a convection-diffusion equation with a source
term. There is a plethora of well-established numerical methods for solving such equa-
tions. This easy to implement second order PDE is widely used in material science ap-
plications where phase change occurs. This equation is in fact, the L2(Ω) gradient flow
of the energy functional defined in Eq. (6.1),

∂φ

∂t
+∇ · (uφ) = ε2∇2φ−W ′(φ). (6.2)

Clearly, this equation is in nonconservative form. Some authors have sought to rectify
this by adding space and time varying Lagrange multipliers (Yang et al. 2006; Kim et al.
2014). However, the inherent lack of conservation of φ in the Allen-Cahn equation is a
major limitation for immiscible two-phase flows.

The Cahn-Hilliard equation is a more popular option within the two-phase flow com-
munity as it conserves total mass. This equation, given by

∂φ

∂t
+∇ · (uφ) = −∇2

[
ε2∇2φ−W ′(φ)

]
, (6.3)

is the H−1(Ω) gradient flow of the energy functional defined in Eq. (6.1). For this specific
phase-field method, Jacqmin (1999) shows how surface tension force can be defined such
that total energy (kinetic energy plus surface energy) is only dissipated, causing spurious
currents to vanish. Most papers on Cahn-Hilliard, including Jacqmin (1999), have focused
on equal or low density ratios. Ding et al. (2007) laid the foundation for applying these
equations to flows with large density ratios. Later, Shen & Yang (2010) extended the work
by Jacqmin (1999) to non-unity density ratios by elaborating on how the momentum
equation for Allen-Cahn and Cahn-Hilliard systems should be modified such that these
phase-field systems admit discrete energy laws in which the total energy is non-increasing.
Dong & Shen (2012) later used this framework and presented a spectral element based
solver which was suitable for handling the fourth order spatial derivatives in Eq. (6.3).
Despite the Cahn-Hilliard based phase-field system’s advantage of upper bounds on total
energy which leads to robustness and stability, the artificial dissipation of total energy
is undesirable, especially for realistic applications such as turbulent two-phase flows.
Moreover, handling a fourth order spatial derivative is cumbersome. Finally, equilibrium
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solutions can yield phase values other than 1 and -1 at pure phases, which is unacceptable
for high density ratios (Yue et al. 2007). In Dong & Shen (2012), this issue was handled
by clipping these out of bounds values. Some authors such as Li et al. (2016) and Wang
et al. (2015) have instead added corrections terms to the right hand side of Eq. (6.3),
but such artificial fixes come with a penalty. Namely, the modified phase-field equations
in such methods are no longer gradient flows of an energy functional, and in addition,
they do not admit discrete energy laws.

Owing to the aforementioned intrinsic deficiencies, neither of the traditional phase-field
equations, Eqs. (6.2) and (6.3), are particularly suitable for simulation of immiscible two-
phase flows. This has motivated researchers to try to combine the advantages of the two
equations while avoiding their issues. In Sun & Beckermann (2007), the curvature-driven
flow in Allen-Cahn is subtracted out to obtain a second-order PDE suitable for two-
phase simulations. Later on, Chiu & Lin (2011) were inspired by the conservative-level-set
literature to reformulate the phase field in Sun & Beckermann (2007) in a conservative
form, giving

∂φ

∂t
+∇ · (uφ) = γ∇ ·

[
ε∇φ− φ(1− φ)

(
∇φ
|∇φ|

)]
. (6.4)

The right hand side in Eq. (6.4) is exactly the same as that used in the reinitialization
step of the original conservative level-set method, Eq. (5.6). In spite of a dispersion-
relation-preserving upwind scheme specially developed for the convection-diffusion equa-
tion, the authors could not guarantee the boundedness of φ and had to resort to mass-
redistribution to handle overshoots and undershoots. In Mirjalili et al. (2017), they proved
that with the same central-difference discretization used in the reinitialization step of
CLS (Olsson & Kreiss 2005), one can choose the free parameters, ε and γ such that the
boundedness of φ in Eq. (6.4) is automatically preserved. As a result, their second-order
accurate, conservative and bounded phase-field method, when coupled to a momentum
transport step with CSF for surface tension force, presents a easy-to-implement approach
for two-phase modeling. Mirjalili et al. (2016) compares this solver with a state of the
art two-phase solver based on unsplit geometric VOF. At the same resolution, the VOF
method is more accurate than the phase-field method. However, at the same cost levels
(CPU time), this phase-field method can actually produce similar accuracy levels as the
VOF method. Based on their results, they also recommended that in lieu of using VOF
at low resolutions, it is possible to achieve more accuracy at lower overall cost using a
phase field with higher spatial resolution. Indeed, this idea has already been exploited in
a hybrid phase field-VOF scheme presented in Liu & Yu (2016). Lastly, we would like to
highlight an important shortcoming in the literature of phase-field methods. Many new
methods are being regularly introduced to the community; however, phase-field methods
have seldom been applied to realistic industrial/atmospheric two-phase problems. Such
attempts are necessary and would further enlighten researchers and CFD users on the
appropriateness of these methods.

7. Hybrid methods

There are various hybrid methods available in the literature, such as coupled-level-
set and volume-of-fluid method (CLSVOF) (Sussman & Puckett 2000), front-tracking
coupled with VOF (Aulisa et al. 2007), and phase field coupled with VOF (Liu & Yu
2016). Of all these methods, CLSVOF has been quite successful since it takes advan-
tage of level-sets in accurate computation of normals and curvature, and also improves
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method GVOF AVOF LS CLSVOF CLS PF

mass conservation 33 33 3 33 33 33

momentum and kinetic-energy conservation 3 7 7 3 3 3

ease of programming 3 3 3 7 3 33

normals and curvature 3 3 33 33 3 3

cost and scalability 3 33 3 7 33 33

unstructured Meshes 33 33 3 3 3 3

overall accuracy 33 3 3 33 3 3

overall potential 33 3 7 3 3 33

Table 1. Status of different interface-capturing methods: geometric volume of fluid (GVOF),
algebraic volume of fluid (AVOF), level set (LS), coupled level set and volume of fluid (CLSVOF),
conservative level set (CLS), and phase field (PF). Signs denote 33: good/solved, 3: satisfactory
progress, 7: poor/no progress.

mass conservation by utilizing the VOF framework. There have been a few variations of
CLSVOF that achieve discrete mass conservation (e.g. Tomar et al. 2005). Overall, the
accuracy of this method is typically higher than a level-set or a VOF method, although
the cost is also higher. This method also has issues in achieving parallel scalability due to
the inherent difficulty in achieving balanced loads in the presence of operations required
for both VOF and level-set methods.

8. Concluding remarks

In this report, we have provided an overview of the most popular interface-capturing
methods, with emphasis on modern developments. In the spirit of comparison, we have
summarized the status of these methods in Table 1. The reader should be able to extract
the rationale behind the ratings in this table from discussions presented in Sections
4-7. We found that the biggest challenge remaining in the field is in developing mass,
momentum and total energy conserving schemes with reasonable cost and scalability (see
Table 1). Indeed, these are required for realistic simulations of two-phase flows, especially
in turbulent conditions. Moreover, by considering other relevant factors, particularly
accuracy and modular adaptability to problems with practical significance (including
compressible flows, unstructured meshes, scalar transport, and surfactant transport),
we conclude in Table 1 that VOF and phase-field methods can be considered the most
promising classes for future investment.

On a separate note, while reviewing the literature for this report, we observed a conspic-
uous scarcity of benchmarks and test-cases that could help to evaluate the performance
of new schemes in problems and conditions pertinent to practical applications. Firstly,
we recommend the design of several test cases at realistic non-dimensional numbers in
which the accuracy and robustness of the fully coupled solver (interface capturing scheme
and momentum equation implementation) can be assessed. Secondly, when performing
DNS or LES of two-phase turbulent flows, it is inevitable that some features (e.g., lig-



130 Mirjalili, Jain & Dodd

aments, films, and droplet fragments) are left under-resolved. It is important that the
under-resolved features do not cause the numerical simulation to diverge or introduce
artificial effects. Yet in papers introducing numerical methods we commonly see a focus
on convergence rates and accuracy at rather high resolutions. Through assessment and
presentation of the performance of solvers at low resolutions, this deficiency should also
be addressed in future work. Hopefully, these improved benchmarks will motivate the
emergence of methods that are more appropriate for tackling difficult, realistic problems
in two-phase flows.

As a final remark, we believe that additional work on multi-physics aspects of two-phase
flows would be beneficial. A number of engineering applications require consideration of
complex phenomena beyond the purely capillary effects reviewed here. For instance, the
utilization of electrostatic effects in spray atomizers represents an interesting method to
control the atomization of liquids (Gomez & Tang 1994; Tang & Gomez 1994; de la Mora
2007). Similarly, the interaction of acoustic waves with droplets, bubbles and interfaces in
general is a problem of relevance for the acoustic traceability of ships in ocean (Trevorrow
et al. 1994), for biomedical applications (Adami et al. 2016), and for fuel atomization
in jet engines (Gajan et al. 2016) and hydrocarbon-fueled scramjets (Urzay 2017). The
treatment of these advanced problems is in its infancy and requires creative extensions
of the existing frameworks reviewed in this report.
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