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Emulsions in homogeneous shear turbulence

By M. E. Rostit, Z. Gef, S. S. Jain,
M. S. Dodd AND L. Brandtii

We simulate the flow of two immiscible and incompressible fluids in a homogeneous
shear turbulent flow at a moderately high Reynolds number by using a volume of fluid
method. The viscosity and density of the two fluids are equal, and various surface ten-
sions and initial droplet diameters are considered. We show that the two-phase flow
reaches a statistically steady state with reduced Reynolds numbers owing to the pres-
ence of the interface, which acts as a sink of turbulent kinetic energy for the solvent fluid.

1. Introduction

The understanding of turbulent two-phase flows with droplets or bubbles is important
in many natural and industrial processes (e.g., rain formation, breaking ocean waves,
spray cooling, and spray atomization in combustors). In these flows, the turbulence is
altered directly by droplet feedback on the surrounding fluid and indirectly by droplet-
droplet interactions. Note that, compared with solid particles, droplets can deform, de-
velop internal circulation, break up, and coalesce with other droplets. Thus, complex
mechanisms are expected to be active.

Direct numerical simulation (DNS) has become a crucial tool for understanding turbu-
lence in two-phase flows, resolving the full range of temporal and spatial scales present in
the flow at the continuum level (Balachandar & Eaton 2010). Depending on the relative
size of the particle (D) to the smallest length scale in turbulence (7), spherical par-
ticles (or droplets) in isotropic turbulence can be broadly classified as sub-Kolmogorov
(D < n) or finite size (D > 7). Extensive studies have been conducted on turbulent flows
laden with sub-Komogorov-size particles (Eaton & Fessler 1994; Ferrante & Elghobashi
2003; Sardina et al. 2012), characterizing the turbulence modulation as well as explaining
their preferential accumulation in the local flow field. More recently, DNS of finite-size,
non-deformable solid particles have been reported (Cate et al. 2004; Lucci et al. 2010;
Picano et al. 2015), adding more physics and complexity owing to advanced numerical
algorithms and the increasing computational power.

Closely related to our problem, Dodd & Ferrante (2016) performed DNS of decaying
homogeneous isotropic turbulence (HIT) with finite-size, deformable droplets at 5% vol-
ume fraction, with an initial Taylor-scale Reynolds number Re), = 83. By varying the
droplet Weber number on the basis of the rms velocity of turbulence, the droplet—to—
carrier fluid density ratio, and the droplet—to—carrier fluid viscosity ratio, they showed
that the presence of the droplets always enhances the decay rate of the turbulent kinetic
energy (TKE). Furthermore, the deformation, breakup, or coalescence of the droplets in-
troduces an additional term to the turbulent kinetic energy (TKE) equation — the power
of the surface tension. Termed ¥, by Dodd & Ferrante (2016), it describes the rate of
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FI1GURE 1. Sketch of the computational domain and of the Cartesian coordinate system.

change of the interfacial energy, balancing the energy transfer between the external fluid
and the flow inside the droplets. Correct identification of these pathways for the TKE
exchange is fundamental to understanding the tubulence modulation by the droplets.

Building upon previous studies, we consider finite-size bubbles/droplets of Taylor
length scale in statistically stationary homogeneous shear turbulence (SS-HST) (Tavoularis
& Corrsin 1981a,b; Pumir 1996; Sekimoto et al. 2016). HST flow is conceivably the sim-
plest case in which the flow is not isotropic while remaining homogeneous in all spa-
tial directions. Moreover, with a natural energy production mechanism, i.e., the shear,
higher Reynolds numbers can be achieved relatively easily. We note that ideal HST is
self-similar, implying an unbounded energy growth within infinite domains (Sukheswalla
et al. 2013). This condition limits any numerical simulations to relatively short times
concerning only the initial shearing of isotropic turbulence (Rogers & Moin 1987; Lee
et al. 1990; Sukheswalla et al. 2013). However, as demonstrated by Pumir (1996) and
Sekimoto et al. (2016), the finite computational box introduces a large-scale confinement
effect similar to those enforced by the wall; thus, a meaningful statistically stationary
state can be reached over long periods. These observations, combined with the insights
recently gained in the droplet-turbulence interaction in HIT, motivate us to further in-
vestigate turbulence modulation due to droplets/bubbles in the SS-HST.

In this paper, we present DNS of the flow of two incompressible fluids separated by an
interface. By changing the initial size of the dispersed phase and the Weber number, we
aim to answer the following questions: (a) Can a statistically stationary state be reached
when the suspended phase actively undergoes breakup and coalescence in HST?, (b) what
determines the steady-state size distribution of the dispersed phase?, and (¢) how does
the dispersed phase change the TKE budget? HST shares many similarities with other
shear flows (Sekimoto et al. 2016); therefore, by answering these questions, we expect
to improve our understanding of the droplet-turbulence interaction and, hopefully, help
future modelers gain intuition about more complex conditions.

This paper is organized as follows. In Section 2, we first discuss the flow configuration
and the governing equations and then present the numerical methodology used to solve
the problem. The results on the fully developed two-phase HST flow are presented in
Section 3, where we answer the questions discussed above based on our observations.
Finally, all the main findings and conclusions are summarized in Section 4.

2. Formulation
2.1. Governing equations and numerical methods

We consider the flow of two immiscible incompressible fluids in a periodic box subject
to a uniform mean shear. Figure 1 shows a sketch of the geometry and the Cartesian
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coordinate system, where z, y, and z (21, 22, and x3) denote the streamwise, shear, and
spanwise coordinates, and u, v, and w (u1, u2, and us) denote the respective components
of the velocity field. Standard periodic conditions are applied in x and z, and a shear-
periodic boundary condition is enforced in y.

The total velocity field u; can be decomposed for convenience into the sum of a mean
component (u;),. generated by the imposed shear S, i.e., (u;)5. = Sx201; where d;; is the
Kronecker delta, and a fluctuating part u;. In this paper we indicate a spatial average in
the z and z directions with ()., fluctuations with the prime symbol ('), and the average
in the full volume with (-). The time evolution of the fluctuating velocity u} is described
by

o oul, ol , 1 dp 02! o
: Aot Ui = —Supdin — ——— L4+ f; and =0, (2.1
ot S22 0 T oz, Suzdin p Ox; T Vaacjaxj tfian ox; 0, (21)

where p and v are the fluid density and kinematic viscosity, p is the pressure and f;
is the surface tension force defined as f; = okn;d, where ¢ is the Dirac delta function
at the interface, o is the interfacial surface tension, x is the interface curvature, and n;
is the normal to the interface. This equation is written in the so-called one-continuum
formulation (Tryggvason et al. 2007) so that only one set of equations is solved in both
phases. The problem is solved by introducing an indicator function H to identify each
fluid phase so that H = 1 in the region occupied by the suspended fluid and H = 0
otherwise. Considering that both fluids are transported by the flow velocity, we update
H in the Eulerian framework by the following advection equation written in divergence
form, d¢/0t + Ou; H/0x; = ¢pOu;/Ox;, where ¢ is the cell-averaged value of the indicator
function.

The above governing equations are solved numerically. First, the transport equation
for ¢ is updated following the methodology described by Ii et al. (2012) and Rosti et al.
(2018). Second, the momentum equation and incompressibility constraint are solved fol-
lowing the method proposed by Gerz et al. (1989) and recently adopted by Tanaka
(2017), in which the second term on the left-hand side of the momentum equation,
i.e., the advection due to the mean shear flow, is solved separately using a Fourier ap-
proximation. In particular, the second-order Adams—Bashforth method is applied for
the convection and viscous terms in Eq. (2.1) to obtain an intermediate velocity u}" =
ul" + At (3/2rhs™ — 1/2rhs”71)7 where At is the time step from time t* to t"*! and
rhs = —Subdin — wjOu/dx; + vd>u}/dx;0x;. The time step At is chosen such that
the Courant-Friedrichs-Lewy (CFL) number Uy,q,At/Ax is smaller than unity, where
Umae = SLy, the maximum velocity of the mean shear flow inside the computational do-
main. The advection due to the mean shear flow is then solved separately using a Fourier
approximation as u}"" (z1, %2, 23) = u}" (£1 — AtSzo, 22, 23). Note that Tanaka (2017)
modified the approach of Gerz et al. (1989) by performing a similar additional step for
the pressure. Our tests suggest that the original form by Gerz et al. (1989) is numerically
more stable and physically consistent with the incompressibility constraint because the
pressure is not a transported quantity. The surface tension term is then taken into account
by updating the velocity field: we use the continuum surface force model by Brackbill
et al. (1992) to compute the surface tension force where the normals are obtained with
the usual Youngs approach (Youngs 1982), thus obtaining u,™™* = u/"* + At f. Finally,
we solve the Poisson’s equation for the new pressure p"t!
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and correct the velocity with p”t! to enforce the incompressibility constraint

n+1
;n—&-l _ U;*** _ gag . (23)
P T

The Poisson’s equation, Eq. (2.2), is solved by exploiting the periodic and shear-periodic
boundary conditions as detailed in Tanaka (2017).

2.2. Setup

The problem is governed by five dimensionless parameters, which are two aspect ratios
of the computational domain (Sekimoto et al. 2016), A,, = Ly/L, ~ 2.1 and A,, =
Ly/L. ~ 1.1; the Reynolds number based on the box width, Re, = SL2/v = 15200;
the Weber number based on the initial droplet diameter Dy, Weg = pS2D3 /o; and the
ratio of the initial droplet diameter to the box size Ap, = Do/L.. In the following, we
consider one case of single-phase flow as reference and nine cases of two-phase flows, as
summarized in Table 1; in the multiphase cases, we vary the ratio Ap, and Wey. Two
other nondimensional parameters are the density and viscosity ratios, which are fixed
to unity to study the separate effect of the Weber number (interfacial surface tension).
Apart from the previous parameters based on geometrical dimensions and initial and
boundary conditions, in the following discussion we use other nondimensional numbers
that are more relevant to discuss the problem at hand, as representative of the solution
itself, such as the Taylor microscale Reynolds number,

1/2 1/2
ReA:@) é:(i> 2K, (2.4)

1% Jve

where A is the Taylor microscale defined as /100K /e (Sekimoto et al. 2016), K = (uju})/2
is the TKE per unit mass, and € = p(0u}/dz;0u}/dz;) is the dissipation rate of the
fluctuating energy. Analogously, we define a Weber number based on A

p (2K + S2A%) A

Wey = === (2.5)

The choice of using A in the definition of the Weber number instead of a dimension asso-
ciated to the suspended phase is due to the fact that the interface is not only deforming,
thus losing its original spherical shape, but also actively undergoing merging and break-
up processes, which makes the definition of a unique dimension difficult. Therefore, we
propose to rely on a fluid length scale, which, as shown below, successfully collapses most
of our data.

3. Results
3.1. Statistically stationary state

We start our analysis by considering a single-phase flow at Re, ~ 15k. The flow is
initialized as a fully developed single-phase HIT, and at ¢ = 0 the mean shear S is
applied. As shown in Figure 2(a), once the shear is applied, the flow undergoes an initial
transient characterized by a strong increase in the production of TKE, which is not in
balance with the dissipation rate. After some time, however, the TKE K decreases owing
to an increase in the dissipation, reaching a new statistically steady-state regime where,
on average, the production balances the dissipation (P/e = 1). This state, called steady-
state shear turbulence, was first found and characterized by Pumir (1996) and later
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FIGURE 2. (a) Time history of the ratio between the turbulent production P = —(u'v")d(u)/dy
and the turbulent dissipation rate ¢ = p{du;/0z;0u;/dx;). The solid and dashed lines represent
the single and multiphase flows (Do = 0.16L. and Weo = 1), respectively. (b) Spectra of the
mean turbulent kinetic energy (solid line) and its three spatial components (dashed, dotted,
and dashed-dotted lines) for the single-phase flow. The other three thin solid lines are used
for the spectra of the two-phase flows with Weo = 2, 4 and 10 and different initial diameters
of the droplets, represented by the three vertical dashed lines. In particular, the lines refer to
Do =~ 0.08, 0.16, and 0.36L.. The spectra are normalized by multiplying by e72/3,

Case Do/L. Weg Wex Rex

— — — 145
0.36  0.5330  0.0220 83
0.16  0.8000  0.0776 101
0.08 2.0943 09339 111
0.36  2.0944 0.6773 113
0.16  4.0156  0.7536 117
0.08 10.4717 49313 132
0.36  4.1890  2.0103 122
0.16  7.9999 4.0868 131
0.08 20.9432 13.3057 142

e e R N

TABLE 1. Summary of the DNS performed with different initial sizes of the interface Doy and
surface tension o, all at a fixed Reynolds number Re, ~ 15000 and volume fraction ® = 5%.

investigated by others (Sekimoto et al. 2016). The resulting Taylor microscale Reynolds
number at the steady state is equal to Re) = 150. The averaged spectrum of the TKE
of this flow is reported in Figure 2(b). Owing to the high Reynolds number, a k—5/3
regime develops at intermediate scales. As reported by Pumir (1996), the spectra of each
individual component of the velocity are different at small wave numbers because of the
large-scale anisotropy, while all spectra coincide at higher wave numbers. This difference
is verified by our data [see Figure 2(b)].

We now consider the multiphase problem. After time ¢ ~ 1005~!, when the single-
phase flow has already reached a statistically steady state, we inject spherical interfaces
into the domain at random locations, globally enclosing a volume fraction of the sus-
pended phase of 5%. The shape of all the interfaces is initially spherical with a fixed
initial diameter Dy in the inertial range of scale, as shown in Figure 2(b) with the verti-
cal dashed lines. In particular, three different initial diameters are chosen, Dy/L. =~ 0.08,
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FIGURE 3. Number of interfaces N as a function of (a) time and (b) Weber number We,. Note
that the scale of the vertical axis in the two figures is the same.

0.16, and 0.32, corresponding to 1.1, 2.5, and 5.6 of the single-phase Taylor microscale
. After the introduction of the dispersed phase, a new short transient arises lasting ap-
proximately 50S~!, eventually leading to a new statistically steady state, as depicted in
Figure 2(a). The resulting Rey and We, are reported in Table 1. Clearly, the multiphase
flows have lower Taylor microscale Reynolds numbers than the single-phase flow, and the
difference decreases as the Weber number increases.

The above results demonstrate that stationarity is not unique to single-phase HST;
it is also realizable in the presence of a second, dispersed phase. If permitted for a
sufficient length of time, turbulent fluctuations can always reach equilibrium with a mean
momentum flux, just as in the logarithmic region of turbulent boundary layers. Here, we
define the stationary state in terms of the statistical properties of the flow averaged over
both phases. Because the droplets can also break up or coalesce, it is natural to ask what
steady-state size distributions they adopt and how that relates to the turbulence. These
questions are answered in the following sections.

3.2. Size distribution

Figure 3 shows the temporal evolution of the number of droplets (A') under various We
and initial sizes Dy. The counting is performed using a n-dimensional image processing
library. Clearly, the droplet counts approach stable values for all the cases, consistent
with the statistical stationary state measured by the averaged flow quantities. We note
that A increases rapidly before tS = 50, suggesting that breakup is the dominant event
during the period of energy growth. Eventually, turbulence dissipation increases and
droplet breakup and coalescence tend to equilibrate. Plotting the steady-state value N
as a function of We,, as in Figure 3(b), we observe that A is nearly linearly proportional
to Wey (a linear fit produces an exponent of approximately 1), independent of the initial
size. Because a higher Weber number corresponds to lower surface energy, we conjecture
that A will grow indefinitely with Wej.

To further characterize the size distribution of the emulsion, we show the cumulative
volume Vol as a function of the equivalent spherical diameter D in Figure 4(a). Each point
on the curves represents the total volume of droplets with equivalent diameters less than
D. Here, both Vol and D are normalized by the global maximal values so that the spectra
are bounded uniformly from above. We observe that as the Weber number increases, the
cumulative volume grows faster, indicating the presence of a larger proportion of small
droplets, consistent with the increasing A noted above in Figure 3(a). The case with
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FIGURE 4. (a) Normalized cumulative volume distribution of the dispersed phase and (b)
maximum droplet size as a function of the energy input. The grey solid line is the equation

poDos /i* = 0.725 (u°e/ pa?) —2/8,

the lowest We, however, exhibits a qualitatively different behavior that is still under
investigation.

Another important parameter related to the size distribution is the largest droplet
size Dpnaqe. Assuming breakup of droplets due to dynamic pressure forces, Hinze (1955)
proposed that the largest possible droplet in a turbulent emulsifier is determined by
the velocity fluctuation across D4, ; if isotropy prevails and the scaling by Kolmogorov
(1941) is accepted, dimensional analysis suggests Dz ~ £=2/5, Statistically, Dy,q, can
be approximated by the diameter of the droplet below which 95% of the total dispersed
volume is occupied, i.e., Dypar = Dos. Extracting Dgs from our data and plotting it
against the energy input, indeed we observe a —2/5 slope, see Figure 4(b). We note that,
although Hinze developed his theory considering only isotropic turbulent flows dominated
by the breakup process and neglecting the coalescence, he hypothesized that the same
scaling law might still hold for nonisotropic flows provided that the droplet sizes fall
within the inertial range. Inspection of the energy spectrum supports this argument.
Our results suggest that the —2/5 scaling between the maximum droplet diameter and
the turbulence dissipation applies not only to isotropic turbulence but also to the HST
that we have analyzed.

3.3. TKE budget

The presence of the interface modifies the flow profoundly. The averaged spectrum of
the TKE in the two-phase case is reported in Figure 2(b), where we observe that the
interface mostly affects the large wave numbers (small scales) for which higher levels of
energy are evident. At the same time, slightly lower energy is present at the large scales.
Note that the result is analogous to what was already found for the case of decaying HIT
for solid particles (Lucci et al. 2010) and bubbles (Dodd & Ferrante 2016); the increased
energy at high wave numbers has been explained by the breakup of large eddies due to
the presence of the suspension and the consequent creation of new eddies of smaller scale.
The TKE K is governed by the following equation

dK
P4, 1
7 P—c+ (3.1)

where the last term is the so-called power of surface tension first introduced by Dodd &
Ferrante (2016). The equation can be easily obtained from the governing Navier—Stokes
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FIGURE 5. (a) Turbulent production P and (b) dissipation e rates averaged over both phases
as a function of the Weber number We, normalized by their value in the single-phase flow (Po
and o).
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FIGURE 6. (a) Turbulent production P,, and (b) dissipation e,, rates averaged over the two
phases separately as a function of the Weber number We. The left and right columns are used
to distinguish the dispersed and carrier phases, respectively.

equation [Eq. (2.1)] averaging over the whole volume and over both phases. At steady
state, the rate of change of TKE is zero and the remaining terms are the production
and dissipation rates and the power of surface tension. Figure 5 shows the production P
and dissipation € rates, normalized by their single-phase values, for all the simulations
performed in the present study as a function of the Weber number Wey. We observe
that both the normalized production and dissipation rates are greater or equal to unity
and decrease monotonically as the We, increases. Moreover, the two quantities have
approximately the same value (the difference is less than 4%), thus indicating that at
steady state the production balances the dissipation, similarly to a single-phase flow, and
that the power of surface tension is on average zero. This result confirms the relation
for ¥, proposed by Dodd & Ferrante (2016), which relates the power of surface tension
to the rate of change of surface area A, i.e., ¥, ~ —dA/dt. Indeed, this relation implies
that at steady state the rate of change of A is zero; thus, ¥, is zero.

Equation (3.1) holds when averaging without distinguishing the two phases, but it
is possible to obtain similar equations for the two phases separately. Indeed, by phase
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averaging in one of the two fluids, we obtain

Ak,
= P = em A T 4 T =P = e + T, (3.2)

where m is one of the two phases. The last two terms in the equation are related to
the power of surface tension ¥, (Dodd & Ferrante 2016); these are transport terms of
TKE due to viscosity 7,% and pressure 7,2, whose sum is 7,,. At steady state, the time
derivative on the left-hand side is zero and the relation states that the production and
dissipation are balanced by 7,,. Figure 6 shows histograms of the production P,, and
dissipation &,, rates as a function of the Weber number We, for three selected cases
for the two phases. We observe that the production rate is lower in the dispersed phase
than in the carrier phase, and the dissipation rate is higher in the dispersed fluid than
in the carrier fluid. These results indicate that the transport term 7, is positive in the
dispersed fluid and negative in the carrier, corresponding to a TKE transfer from the
carrier to the dispersed phase; i.e., the presence of the droplets is overall a sink for the
TKE of the bulk fluid. In addition, we observe that the difference in P,, and ¢, decreases
with WG)\.

4. Conclusions

We have simulated a two-phase HST flow at Re, =~ 15000. The droplets are initially
spheres providing 5% volume fraction of the suspended phase. We showed that the two-
phase flow is able to reach a statistically steady state in terms of both TKE and droplet
number and size. The resulting flow has a lower Reynolds number based on the Taylor
microscale than the single-phase flow does; this is due to the presence of the interface,
which results in increased production and dissipation rates of TKE. We have showed that
the surface tension power has no effect on average, because production and dissipation
are statistically in balance. We have also proved that the interface acts as a sink of TKE
for the carrier phase, with a net flux going from the bulk of the fluid to the dispersed
phase, where it is dissipated.
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