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ABSTRACT

We study the effect of bubble breakup and coalescence on fine-scale dynamics of bubbly turbulent flows using direct numerical simulations.
We perform two different simulations of dilute bubbly flows of void fraction 0.5%: one with bubbles breaking up and coalescing and the
other without these physical processes. The volume of the fluid method is used for simulating bubbles undergoing breakup and coalescence
while the bubbles are treated as rigid spheres in the immersed boundary method simulation. The energy spectrum in both types of simula-
tion, consistent with previous studies, exhibits a —3 slope. We follow a single infinitesimal fluid element as it evolves to understand velocity
gradient dynamics using conditional mean trajectories. We note finite-time divergence when the fluid element evolves under the action of
inertial and pressure dynamics. The inertial, pressure, and viscous velocity gradient dynamics, when considered individually, produce the
same results for bubble-induced turbulence (BIT) as with the classical homogeneous isotropic turbulence (HIT). Yet when the overall velocity
gradient dynamics is considered, BIT results in non-cyclic trajectories moving toward stable node and unstable saddle while classical HIT
shows cyclic behavior in their trajectories that move toward the origin. Interestingly, both the volume of fluid and immersed boundary simu-
lations produce similar results. Therefore, there are two main takeaways from this research. First, new velocity gradient models are needed
for BIT as their velocity gradients behavior is entirely different from the HIT. Second, we can neglect the bubble topology, breakup, and coa-
lescence while studying or modeling the fine-scale dynamics of BIT.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0094573

I. INTRODUCTION

Turbulent bubbly flows are common both in nature and in
industry.'” Ocean waves and mist contain air bubbles that affect the
transport properties of the liquid continuous phase. Many industrial

turbulence-generating grid. They found that increasing the void frac-
tion (o) increases the turbulent kinetic energy of BIT. They also
reported that, as the void fraction increases, the one-dimensional
energy spectra of the liquid phase slowly changes from a —5/3 slope to

applications, such as distillation, absorption, flotation, spray drying,
electro-machining, and boiling involve bubbly flows." Unlike single-
phase flows that often require an external pressure gradient for the
flow to happen, the bubbly flows that we consider in this paper can
happen entirely due to buoyancy alone. That is, the bubbles rise due to
the differences in densities of the dispersed bubble phase and the liquid
continuous phase. When a bubble rises due to buoyancy, it causes
velocity fluctuations to the surrounding liquid and this is often called
bubble induced turbulence (BIT)."

Lance and Bataille,” in their pioneering work, performed experi-
ments of a homogeneous swarm of bubbles in the presence of a

a near —3 slope. Ever since this study, there have been various experi-
mental studies conducted on this configuration.” '” These experimen-
tal studies have revealed many of the characteristics of bubble-induced
velocity fluctuations. Many studies have proven that the intensity of
bubble-induced fluctuation increases with bubble concentration or
void fraction.”® Risso and Ellingsen” showed that these velocity fluctu-
ations are controlled by interactions of bubble wakes. Much of the
velocity fluctuations are generated in the close region surrounding the
bubble, and the magnitude of these fluctuations decreases as we move
away from the bubble into the far wake region. While these velocity
fluctuations are independent of void fraction in the near wake region
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of the bubble, there is some dependency in the far-wake region. Risso
and Ellingsen” arrived at scaling for probability density distributions
(PDF) of these velocity fluctuations in the far-wake, which scale with
the void fraction as %4, Riboux et al.” obtained scaling laws for the
largest and smallest length scales in BIT in terms of problem parame-
ters such as the void fraction. These experiments also show that the
PDFs of these velocity fluctuations are non-Gaussian in the direction
along which the bubble moves. The magnitude of such velocity fluctu-
ations along the bubble moving direction is found to be higher than
the fluctuations along the other directions.

As mentioned before, the other important result in BIT is the
observation of a —3 slope in the energy spectrum.”*”'" This observa-
tion clearly shows that the characteristic of BIT is different from the
classical homogeneous isotropic turbulence (HIT). It is generally
believed that the localized disturbances due to the bubble movement
give rise to this phenomenon.'*

Bunner and Tryggvason'~ pioneered the numerical modeling of
bubbly flows for low Reynolds numbers. Following their study, there are
many numerical studies on this problem.'® ' These studies have cor-
roborated the important experimental observations such as the —3 slope
in the energy spectrum and the non-Gaussian behavior of the velocity
fluctuations PDFs.'*'® Moreover, the numerical studies have identified
a bubble-free wall layer in a bubbly pipe flow and the corresponding
mechanism through which the bubbles move in and out of the wall
layer.'”* Very recent numerical studies shed light on the energy cascade
mechanism behind the —3 energy spectrum slope through the spectral
scale-by-scale energy transport analysis.”” ** There are also various stud-
ies on the application of bubbly flows in drag reduction, polymers, swirl
atomizer, and oxygen transfer in atmosphere.”” >’

According to Tsinober,”” the large-scale terms of turbulence are
represented by velocity fluctuations while the turbulent small-scale
terms are written in terms of velocity gradients. Going with this defini-
tion, we see from the BIT literature that most of the studies have
focused only on the large-scale aspect of BIT. We know that the large
scales in turbulent flows are often dictated by the boundary conditions
of the problem, and their properties vary from one problem to
another. On the contrary, the small scales of turbulence are unaffected
by the problem parameters and any universal turbulence theory can
be developed only based on fine-scale turbulence. There are two ways
to analyze the small scales of turbulence. In the first method, the small
scales are studied for their statistical behavior in terms of their PDFs
and joint probability functions (JPDF). Such a study is commonly
called topological studies as they reveal the topology of fine-scale tur-
bulence. In the second method, we track a fluid element for its velocity
gradient to see how it reacts to various forces acting on the element.
This study is called the dynamical study of fine-scale turbulence.

Looking at the BIT literature, we see that there is no experimental
study that focuses on fine-scale BIT. Very recently, there has been a few
direct numerical simulation (DNS) studies on the topological aspects of
small-scale BIT.”' ** These studies are further examined in the second
part of this work. Yet, to the best of our knowledge, there are no studies
available on the dynamical aspect of BIT. Martin et al”® and Ooi
et al.”® studied the dynamical aspect for HIT. It is well known from
their studies that the movement of a fluid element in the phase map of
the second and third velocity gradient is cyclic. Following these works,
similar studies have been carried out on various turbulent systems.””*
No such study, however, is available in the literature for BIT.

scitation.org/journal/phf

This warrants a detailed study on this aspect. Above all, previous stud-
ies have shown the effectiveness of BIT in mixing and heat transfer”” "'
and we know that diffusion takes place due to the action of turbulent
small scales. This means that a study on the dynamical aspect of fine-
scale BIT would help to develop universal theories of BIT. Therefore,
we study BIT for a periodic bubbly column using high-resolution DNS.

We ask the following two questions in this study. First, what is
the impact of bubble breakup and coalescence on the dynamical aspect
of fine-scale BIT? Second, how does BIT compare with the classical
HIT when it comes to the dynamical characteristics of fine-scale tur-
bulence? To answer these questions, we carry out bubbly turbulent
flow in a vertical column using two different numerical techniques.
First, we use the volume of fluid (VoF) method, which models the
bubble breakup and coalescence. Second, we also simulate the same
system using an Eulerian-Lagrangian immersed boundary method
(IBM) where the bubbles do not undergo breakup and coalescence. To
compare with the HIT and to gain confidence in the postprocessing
tools we developed, we also simulate the HIT in a periodic box.

This paper is organized as follows. The governing equations
along with the numerical methodologies are presented in Sec. IL
Section IIT presents the numerical details of the simulations. The
results are presented in Sec. I'V, and Sec. V summarizes the main take-
aways from this study.

Il. GOVERNING EQUATIONS AND NUMERICAL
METHODOLOGY

The dynamics of the continuous liquid matrix are predicted
through direct numerical simulation (DNS) of the Navier-Stokes
equations for an unsteady, incompressible and viscous flow, described
by the following equations:

V-u=0, (1a)
@-i- -V *—lV Viu+f (1b)
ot u-vu= » p+rviu+t,
where u = u(x, t) is the fluid velocity, p is the density, p = p(x,¢t) is
the scalar pressure field, v is the water’s kinematic viscosity, and
f = f(x, t) is the body force term exerted at the bubble-liquid inter-
face. We adopted two fundamentally different approaches to simulate
the dispersed phase, which results in different ways of calculating f.
These equations are solved using the volume of fluid method (VoF)
and the immersed boundary method (IBM). We also simulate
Homogeneous Isotropic turbulence (HIT) in a periodic box. Details
about these methodologies are presented in the Appendix.

lll. COMPUTATIONAL DETAILS

A bubble swarm was simulated in a periodic vertical channel in
which the bubble’s buoyancy is the only source of motion. The chan-
nel’s dimensions are 40D, x 20Dy, x 20Dy, where D, is the initial
bubble diameter. The periodic boundary condition for the continuous
and discrete phases was applied in all directions, as shown in Fig. 1.
The initial bubble diameter is Dy = 2 mm, providing that Re, ~ 400
and the gravity acceleration is g = —9.81 ms 2. To prevent uniform
acceleration of the gas-liquid flow in the VoF simulation, we explicitly
account for the hydrostatic pressure term in the momentum equation
by adding a body force opposing the acceleration due to gravity.** For
the VoF simulation, the Eotvos number based on the initial bubble
diameter is Eo = 0.538 and it reaches to a maximum value of 13 for
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FIG. 1. Computational domain with boundary conditions.

the largest bubble size. Please note that the coordinate system shown
in Fig. 1 is applicable for VoF simulation only as the gravity direction
is taken as the x-axis for the IBM simulation. A void fraction of 0.5%
was simulated for IBM and VoF. The grid resolution for VoF corre-
sponds to approximately 13 grid points per initial bubble diameter,
and for IBM, there are 8 Eulerian cells across the bubble diameter,
yielding 210 Lagrangian markers per bubble. Further details about the
simulations, mesh independence study, and validations can be found
in our previous works.”** "

For the case of HIT, we use a periodic box of size 21 x 21 x 27
with 128 mesh points along each direction. The Reynolds number
based on the Taylor length scale (Re;) is 80 for the HIT case.

IV. RESULTS AND DISCUSSION

This section presents the main results of this study. We first pre-
sent the evolution of turbulent kinetic energy (TKE) and energy
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spectra at some specific time instants along with snapshots of the flow
field to provide an idea of what sort of flow that we are dealing with.
We also pick two locations based on these evolutions. Then, we discuss
the velocity gradient dynamics for these two locations.

A. Evolution of turbulent kinetic energy and its spectra

Before we discuss the main results, it is helpful to remember that
the number of bubbles and their size remains the same throughout the
simulation in IBM as the bubbles do not undergo breakup and coales-
cence in the IBM simulation. In the VoF simulation, however, the bub-
bles break up and coalesce and, thus, the number of bubbles keeps
decreasing during the simulation. The variation of the number of bub-
bles in the VoF simulation with respect to time is shown in Fig. 2(a).
The breakup and coalescence of bubbles in VoF simulation also alter
the bubble size distribution. This can be visualized from the result
shown in Fig. 2(b) where D,, is the equivalent sphere diameter.

Figure 3 depicts the temporal evolution of turbulent kinetic
energy of the bubbly flows. Both VoF [Fig. 3(a)] and IBM [Fig. 3(b)]
predict the same trend of TKE evolution. Since the bubbles are intro-
duced in a quiescent fluid, there is no TKE at t = 0 in both simulations.
Once the bubbles start rising in the channel, the TKE slowly increases
irrespective of whether the bubbles break up and coalesce. It is gener-
ally believed that the turbulence here arises from two contributions."*
The first one is the disturbances due to bubble movements. The sec-
ond one is the instability of the liquid that turns to turbulence beyond
a certain critical Reynolds number. Therefore, both cases are in an
unsteady state for a reasonable amount of time. This unsteady state
could be attributed to the intermittent wake interactions between the
vortices shed by the individual bubbles in the bubble wakes. Once the
bubble wakes are fully mixed, we start to observe a quasi-steady state
in both simulations. In IBM, this quasi-steady state is entirely due to
the homogeneous mixing of the bubble wakes as the number of bub-
bles remain the same throughout the simulation. In VoF, however, the
number of bubbles continues to decrease due to breakup and coales-
cence until the bubbles reach their terminal velocity. Therefore, when
the effect of breakup and coalescence is present, the quasi-steady state
is marked by a reduced yet constant number of bubbles whose veloci-
ties are comparable to the terminal velocity. Here, the amount of

Bt =15, N =116
Plt=55N=26
[t =10s,N =9
Bt =20s,N =4

FIG. 2. (a) Number of bubbles over time.
(b) Bubble size distribution in VoF
simulation.
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intermittent wake interaction continues to exist even in the quasi-
steady state albeit the level of intermittency is low compared to the
unsteady state.

Having discussed the TKE evolution, now we turn our atten-
tion to the energy spectra. It is easy to compute the spectra of TKE
for single-phase flows, but it is not straightforward for bubbly flows
as the velocity signals are discontinuous. The literature shows that
there are mainly three ways to circumvent this problem." Yet, all the
methods result in the same conclusion that the spectrum of turbu-
lent kinetic energy has a k> slope, where k is the wavenumber. In
some studies, a —5/3 slope was also present at high wavenumbers.
This is attributed to the fact that those studies also had shear-
induced turbulence (for instance, grid-generated turbulence) besides
the bubbly flows. Therefore, such studies designated a —3 slope for
bubble-induced turbulence and a —5/3 slope for the shear-induced
turbulence.

107
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In this study, we consider only the velocity signal of the continu-
ous phase by avoiding the bubble phase. Since the flow is temporally
developing, as noted in Fig. 3, it is reasonable to look when exactly the
energy spectra starts exhibiting the best possible —3 wavelength range.
Figure 4 shows the energy spectra in the unsteady region where the
energy spectrum starts exhibiting the best —3 slope. We call this loca-
tion US_3, where US stands for unsteady and —3 represents the slope
of the energy spectrum at that location. The red, blue and green lines
in Fig. 4 correspond to fluctuations along x, y, and z directions, respec-
tively. We have normalized the TKE with root mean square (rms) val-
ues of velocity fluctuations corresponding to the particular direction.
We have also put the experimental data of Riboux et al.” as dotted lines
in the same figure. Figure 4 corresponds to t = 3 and 0.75s for VoF
and IBM, respectively. The corresponding Reynolds number based on
the Taylor length scale (Re;) is around 20 for both cases. The values of
Kolmogorov, Taylor, and integral length scales at both the stations are

FIG. 4. Spectra of turbulent kinetic energy at the US_5 station obtained by (a) VoF and (b) IBM. The velocity fluctuations along the x, y, and z directions are represented in
red, blue, and green lines, respectively, where the solid lines are the data from the current simulations and the dashed lines are the data from the literature.
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TABLE 1. Values of Kolmogorov (n), Taylor (4), and integral (L) length scale values
for BIT at different stations. The values are normalized using the bubble diameter

D).

Simulation n/D o/D L/D
BIT/VoF: US_; 0.0026 0.0217 0.15
BIT/IBM: US_3 0.0025 0.0441 0.22
BIT/VoF: QS_; 0.0021 0.0211 0.13
BIT/IBM: QS_3 0.002 0.04311 0.21

presented in Table I. It is not surprising that the —5/3 slope is
completely absent here even at large wavelengths as we do not have a
medium to generate shear turbulence in this study. Our results agree
well with the previous studies.” "' Tt is also surprising that both
VoF and IBM produce similar spectra. Yet, there is one importance
difference between Figs. 4(a) and 4(b). In VoF, the kinetic energy
along the y-direction seems to be much higher than in the other two
directions while the kinetic energy along the x-direction in the IBM
simulation seems to be higher than in the other two directions. This
difference is attributed to the direction of gravity. We informed in
Sec. 1T that the gravity acts along the y direction in VoF and along
the x direction in IBM. It seems that the direction in which the grav-
ity is acting tends to produce more kinetic energy in that direction.
This is the reason behind the differences between VoF and IBM in
terms of turbulent kinetic energy spectra.

The flow fields corresponding to the energy spectra in Fig. 4 are
shown in Fig. 5. The iso-surfaces of a constant Q-criterion are plotted
in this figure. We can see from this figure that the flow has just started
developing at this time instant in both VoF and IBM simulations. The
wakes behind the bubbles are only partially developed. We can also
see that the level of intermittency is high at this time instant. Yet, for
this time instant, both VoF and IBM show the same trend of —3 slope
defined for a wide range of wavelengths. This shows that the bubble

ARTICLE scitation.org/journal/phf

(a) (b)

FIG. 5. Visualization of flow structures at the US_; station with Q-criterion
(Q=5000) obtained using (a) VoF and (b) IBM.

shape, breakup, and coalescence do not affect the nature of the bubbly
energy cascade.

Previous studies reported the spectrum only for the quasi-steady
state. The corresponding spectra for the quasi-steady state for our
study are shown in Fig. 6. We name this location as QS_3, which
stands for quasi-steady location with a —3 energy spectrum slope.
Here, the simulation time corresponds to VoF and IBM are 18 and
3.5s, respectively. The Re; values at this location are around 75.

102 |
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w107
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= 105
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10 102 102 104
-1
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FIG. 6. Spectra of turbulent kinetic energy at the QS_3 station obtained using (a) VoF and (b) IBM. The velocity fluctuations along the x, y, and z directions are represented in
red, green, and blue lines, respectively, where the solid lines are the data from the current simulations and the dashed lines are the data from the literature.
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Classical turbulence theory informs us that as the Re; increases, the
sink of the turbulent kinetic energy is moved further away from the
energy injection point at the spectra, and thus, the wavelength range
on which —5/3 (here —3 slope) is defined increases. We see a
completely different picture when we compare Figs. 4 and 6. The
wavelength range on which the —3 slope is defined has become shorter
at the QS_3 compared with the US_3. At this location also, we do not
see any trace of —5/3 slope in the spectra as we are dealing with a pure
bubble swarm without any influence of shear flows. Here also, we see
the impact of the difference in gravity direction in VoF and IBM as the
spectrum along the y-direction (blue color line) is distinct in the VoF
simulation [Fig. 6(a)] and the spectrum along the x-direction (red
color line) is distinct in the IBM simulation [Fig. 6(b)].

The flow field corresponding to the QS_j station is shown in
Fig. 7. Here also, iso-surfaces of constant value of Q-criterion are plot-
ted to elucidate the flow field. We note that the number of bubbles in
VoF and IBM simulations at this time instant is different. This differ-
ence is expected as the bubbles break up and coalesce in VoF while the
bubbles in the IBM simulation do not undergo these processes. The
wakes behind the bubbles are fully developed, and the intermittent
meeting of bubble wakes is largely absent at this time instant despite
that the VoF simulation has only a few bubbles. For this kind of flow
field, the velocity spectra exhibit a —3 slope.

From this point onward, our study would focus only on the two
temporal locations discussed in this subsection: (i) the location
where the energy spectrum started to show the best —3 slope, which
is in the unsteady state: US_3 and (ii) the location that corresponds
to quasi-steady state: QS_;. We look at the fine-scale turbulence
dynamics at these locations and compare the results with the HIT
throughout the rest of the paper.

(b)

FIG. 7. Visualization of flow structures at the QS_; station with Q-criterion
(Q=5000) obtained using (a) VoF and (b) IBM.

scitation.org/journal/phf

B. Mathematical background of the dynamics
of fine-scale homogeneous isotropic turbulence

In this paper, we are interested in the velocity gradient tensor
(VGT), Ajj = Ou;/0x;. This second-order tensor has the following
characteristic equation:

A} +PA} + QA +R=0, )

where A; (i=1, 2, and 3) are the eigenvalues of the velocity
gradient tensor, which has three invariants, P, Q, and R, which are
given as

P = A,‘i7 (3)
1
Q=- EAijAjiy 4
1
R = =3 AjA5A. 5)

The discriminant of Eq. (2) is
27
D="R+Q. (6)

For an incompressible flow, the trace of the VGT is zero; therefore,
P=0. The other two invariants are often used as joint probability den-
sity functions to study the topology of the flow. Such studies treat the
computational domain as strain- and vorticity-dominating regions,
and they seek the presence of flow structures in a statistical sense.
Therefore, such studies can fall into the category of studying the kine-
matics of VGT. In this paper, we are interested in the dynamics of the
VGT where we follow the fluid element, which consists of vorticity
and strain and study what happens to the VGT characteristics of this
fluid element as we follow it. To this end, we need to derive and ana-
lyze the governing equations of the VGT and its non-zero invariants.
This section briefly discusses how these equations are derived and
used for the dynamical analysis of VGT.

1. Governing equations

The dynamical equation of VGT is obtained from the following
Navier-Stokes equations:

Ou; Ou; 0 0*u;
ot ukﬁ:,_p v Ui . (7)
ot Ox 0x; OxxOx
Differentiating the above equation with respect to x; leads to™"*°
8A,j Az] 82}7 82A,~
—— t U+ ApAyj = —5—F—+v T 8
o Ko TN T T oxowg | onox ®)
Denoting 2the pressure and viscous Hessian matrices as H fj) = ai%ng
and HY = 1-22 the above equation can be written as’"°
ij Ox Oxy.
DA; P 4
o + AiAy = —H; + H, 9)

where [ is the total derivative term given as £ = £ + u ;o
Although Eq. (9) is an useful equation, it can be further improved
by segregating the effects of dilatational and deviatoric parts of the

. 35,36
pressure Hessian as™ "
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HP HP* 4 HP/

m (10)

where H/* and H} are the dilatational and deviatoric parts of the
pressure Hessian matrix and they are given as

0ji
Hf;* Hp, 3” (11)
P P 5’]
Hj = Hj — Hf, - 3 (12)
Substituting Eq. (10) in Eq. (9),
DA 5 '
Dt” KAk = H,fk HP +HV (13)

Since the dilatational part of the pressure Hessian is local, it does
not act as a source term. Therefore, this term can be brought to the
left-hand side as®*°

0ii ,
KA + H,fk?” = —Hf +Hj. (14)

We can now write the dilatational part of the pressure Hessian in
terms of the local velocity gradients as follows. Note that the trace of
the A;; is zero due to incompressibility, setting i =j in Eq. (14), we get
the equation for the dilatational part of the pressure Hessian as

AgAy = —H?. (15)
Substituting Eq. (15) in Eq. (13),

DA 5i :
Dtl] ikAxj — AikAki?l} = ng + H,}/ (16)
Grouping together the source terms as Hj = ng-y + H,Y , the
governing equation of VGT in final form is”>*
DAy o g — gy 2 —
Dt ikAkj — Aik ki?—Hijv (17)

where Hj; = H + H) and Hj P is the deviatoric part of the pressure
Hessian and HY i 1s the viscous term

From Eq. (17), we can also deduce the governing equations of Q
and R. First, we need to derive the governing equation for the double
and triple products and then taking the trace of the results would yield
the following governing equations for Q and R:*>*°

DQ _

Dy = 3R~ AyHj, (18)
DR
o3 Q iiAjkHki- (19)

If we neglect all the source terms by setting H;; = 0, then we
obtain the restricted Euler equations as” >

DF? = —3R, (20)
DR 2

As seen from the above equations, the dynamical equations of the
VGT invariants are functions of the invariants themselves when the
source terms are neglected.

2. Conditional mean trajectories (CMT)

The best way to obtain VGT dynamics is to calculate the terms in
Egs. (17)-(19) by following a fluid particle. This technique, however, is
cumbersome on many levels. First, particle tracking must be carried
out concurrently along with the simulation. Second, we need to invoke
sophisticated mathematical concepts to accurately track particle dis-
placement and its integration. Finally, we must track a large number
of fluid particles to reach statistical convergence. To circumvent these
difficulties, a new conditional averaging method was proposed by
Martin et al.”” In this method, the mean time derivative of the invari-
ants is conditioned on the invariants themselves. As such, the mean
time derivatives of the VGT invariants are functions of the invariants
and they are plotted in the phase space map of the invariants.
Therefore, we compute the mean time derivative of invariants at all
the points in the phase space of Q and R using the conditional averag-
ing technique as shown below:

Q(Q R) <Dt > = —3R-— <AijI—Iji|R,Q>7 (22)
DR 2
(Q R) <Dt > = EQZ - <AijAijki‘R,Q>~ (23)

We use 20 snapshots around each of US_; and QS_3 stations to com-
pute the above equations. The above two equations form the compo-
nents of a vector, and when this vector quantity is plotted in the (Q, R)
phase space, the resulting streamlines are called conditional mean tra-
jectories (CMTs).

Note that Egs. (22) and (23) consist of dynamics belonging to the
inertia, pressure and viscosity. We can consider the effects of these
individually as follows. For instance, the CMTs for the inertial system
are obtained using the following equations:

. D

Qre(Q,R) = < ng > = —3R, (24)
R.Q

. DR 2

Rpe(Q,R) = < DfE Q> = ng. (25)
R,

Similarly, the CMT for the VGT system which is subject to pressure
forces alone can be obtained as

. D ,
Qp(Q,R) = <DQtP > = (4, HP I, Q> (26)
R,Q
. DR /
Rp(Q,R) = <Dt” > = (AjAiHg |ro), (27)
R,Q

where HZ.};’ is given in Eq. (12).
Finally, the equations for the VGT dynamical system subject to
only viscous effects can be written as

: D
Qv(QR) = < DQtV > = —(4iH] |r o) (28)
RQ
DR
Ry(Q,R) = <Ttv > = —(AjAjH g o)- (29)
RQ
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FIG. 8. CMT of VGT inertial dynamics obtained for (a) HIT, (b) VoF, and (c) IBM. The BIT sub-figures are plotted for the US_5 station.

Equations (22)-(29) are important for our study as we compute
these conditionally averaged quantities and plot them as CMTs in Q,
R phase space.

As mentioned before, both Q and R form two components of a
vector. Thus, we can also compute the magnitude of each of these vec-

tors as
o o\ R\
man-(\(-57) * (e ) @

where Q; = — %sijs,»j with s;; is the strain-rate tensor.

M(QRE7RR5)2< <<QSE>2) + <<RSE>2> >a (31
o &\ [ R\

M(QP,RP)< <<_ QS>2> +<<_QS>2) > (32)
o &\ [ &\

maoko=(\ (o) + (Fap) ) o

In Secs. IV C-IV F, we present the dynamics of inertial, pressure, vis-
cous, and overall terms along with their magnitudes to elucidate the
role of breakup and coalescence and to reveal the differences of bubbly
VGT dynamics with that of the HIT.

~

C. Inertial dynamics

1. Homogeneous isotropic turbulence

We first present the inertial dynamics of the classical HIT case as
a detailed explanation of fine-scale HIT dynamics is still lacking in the
literature. The conditional mean trajectories of the inertial system for
the case of HIT are depicted in Fig. 8(a). We can see from this figure
that the CMTs are attracted toward the right branch of the curve

D =0. This is the typical behavior of the inertial system, and this was
first observed by Vieillefosse’” and later various studies have con-
firmed such a pattern,”*""*>*

In terms of flow physics, Fig. 8(a) can be explained using a simple
example as shown in Fig. 9. Let us consider a fluid element, which has
non-zero strain components of s,;, Sy, and s33. As we know, this ele-
ment also has vorticity in it and let us say that the predominant com-
ponent here is ), that is the fluid element rotates about the axis “1.”
Now, let us consider that this fluid element has more vortex stretching
than the strain self-amplification. This means that the value of R is
negative [recall that R = —1 (sysicsi + 3 wisjjv;)]. Such a configura-
tion is possible for our simple case when s;; is positive while s,, and
s33 are negative. For example, let us say s;; = 1, s, = —0.5, and s33
= —0.5. Since these components form the diagonal of the strain-rate
tensor, the sum of these components must be zero (i.e., s;; + S5 + $33
= 0). For this case, the strain self-amplification value will be less than
the value of vortex stretching. Particularly, for this case, the strain self-
amplification is negative (i.e., —s;siksxi < 0).

(7]
-

Su

.

(2) (b)

FIG. 9. A typical fluid element with strain and vorticity where (a) enstrophy produc-
tion is greater than strain production and (b) strain production is greater than ens-
trophy production.
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We know that strain and vorticity are governed by the following
equations:

— - W;W; = W;S;iW; VW —F—
D2 T R T o
D1 1 op 2sij
EES{]‘S,’]‘ = —SiijkSk,' — ZCUZ'S,‘]'OJ]' — Sij m =+ Z/Sijm. (35)

From these equations, we see that the source term for strain is strain
self-amplification and the source term of vorticity is vortex stretching.
We also see that vortex stretching also acts as a sink term for strain.

From the above equations, it is easy to see that the total time
derivative of vorticity and strain are positive and negative as w;s;je; is
positive and —s;siksy; is negative for our simple case when R < 0. This
means that, as the fluid element evolves, its vorticity would increase
and its strain would decrease. The increase in vorticity due to stretch-
ing is well documented, and it can be easily explained for this illustra-
tive example too."” Since there are two compressing and one extensive
strain for R <0, we see that the fluid element in Fig. 9(a) would be
stretched along the direction “1” and the value of “r” [see Fig. 9(a)]
would shrink. As the moment of inertia of this fluid element is propor-
tional to “r,” a decrease in it would decrease the fluid element’s
moment of inertia. As a result, to conserve angular momentum, the
angular velocity of the fluid element (i.e., vorticity) increases.

At this point, one might tend to think that the vorticity would
continue to increase toward infinity for this case. In reality, however,
stronger vortex stretching would lead to reduced strain. This can be
seen from the fact that the positive value of w;s;jw; for this simple case
is leading to a negative value of —s;;sjxsx;. Moreover, we also observe in
Eq. (35) that the vortex stretching term acts as a sink term for strain.
Once the strain decreases, it would weaken vortex stretching as enstro-
phy production occurs due to a complex interaction of strain and vor-
ticity. Due to this, the growth of vorticity for this simple case is
bounded. Therefore, although the vorticity starts increasing as the fluid
element evolves in time, the rate of its increase becomes weaker and
weaker as the element continues to evolve. For this simple case, there
are two possibilities concerning the initial state of strain and vorticity:
(i) vorticity dominating strain and (ii) strain dominating vorticity.

Let us consider the first possibility. Let us say that the same fluid
element has more vorticity than strain initially. This fluid element
would fall in the upper-left quadrant of the (Q, R) phase space. As we
saw earlier, once this element starts evolving, its vorticity would
increase with a continually reduced rate of increase and its strain
would decrease. Therefore, the fluid element would start moving
upward in the (+Q, —R) quadrant of the (Q, R) phase space. At the
same time, the production of vorticity would decrease because of the
weakened strain and the production of strain would decrease because
of the negative —s;;syksy;. Due to this, the balance between these two
production terms would remain very small. This is the reason why we
see the fluid element is moving along a near-straight-line in the
(+Q, —R) quadrant of the (Q, R) phase space.

As the strain continues to decrease during the evolution of the
fluid element, there comes a point during the evolution of the fluid ele-
ment where there is so much vorticity but not enough strain to stretch
the element. At this point, there is little vortex stretching, which causes
a little decrease in strain. Therefore, from this point onward, the fluid
element evolves with the balance between the production terms of
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strain and vorticity approaching zero from the negative value. Once
enough strain has been generated, the fluid element now finds itself in the
positive R side of the (Q, R) phase space with the state depicted in
Fig. 9(b) where we have two extensive strains and one compressive strain.

In the new configuration shown in Fig. 9(b), the strain self-
amplification value would be positive (i.e., —sjsiksw > 0), which leads
to an increase in the strain as the fluid element evolves in the upper-
right quadrant of the (Q, R) phase space. At the same time, the value
of “r” would increase due to stretching along the direction “3.” This
would lead to an increase in moment of inertia, and thus, the vorticity
would start decreasing. Now we have a situation where the strain
would continually increase without any bound, and the vorticity would
continually decrease without any bound too. Since the positive quad-
rant of the (Q, R) phase space has more vorticity than strain, there will
be enstrophy production albeit it has a negative value. Due to this, the
difference between the production terms of strain and vorticity would
be small yet increasing as the fluid element evolves in the (+Q, +R)
quadrant of the (Q, R) phase space. This is the reason why we see
another near-straight-line behavior in this quadrant.

As the fluid element continues to evolve, there comes a point
where the amount of strain would exceed the amount of vorticity. This
would take the fluid element to the lower-right quadrant of the (Q, R)
phase space. Once the fluid element entered into this quadrant, the
enstrophy production term would become negligible as the amount of
vorticity is too small. Therefore, the R term is now entirely controlled
by the strain self-amplification due to which the R value continually
increases along the positive horizontal axis. Moreover, here the strain
also increases without bound. As a result, the value of strain and its
production evolves toward infinity. Thus, the fluid element evolves
toward finite-time divergence along the right-hand branch of the
equation D=0 in the (—Q, R) quadrant of the (Q, R) phase space.

In the second possibility of the simple case that we consider, there
is more strain compared to vorticity at the initial time. We know that
for our simple case when R < 0, the strain would go down and the vor-
ticity would go up with the rate of increase continually decreasing. As
a result, the fluid element would go up in the (—Q, —R) quadrant of
the (Q, R) phase space. If the amount of vorticity is reasonable enough,
this element would eventually evolve to the upper-left quadrant of the
(Q, R) phase space and all the mechanisms that we explained in this
section would occur for this element as it reaches the finite-time diver-
gence. In general, the fluid element that lies above the left branch of
the D=0 equation would undergo such an evolution. The fluid ele-
ment that lies under the left-branch of D=0 equation, however, has
little vorticity, and as such even before the enstrophy production starts
kicking in, the strain dominance slowly brings this element to the
right-hand side of the R axis where the fluid element now takes the
state of the one shown in Fig. 9(b), which helps the fluid element to
generate more strain while the vorticity is continually decreased. As
the amount of vorticity is already too low for this element, the R term
is now entirely controlled by the strain self-amplification, which takes
the fluid element further right in the (—Q, R) quadrant of the (Q, R)
phase space toward the right-hand branch of D=0 equation. Thus,
for this second possibility also, the fluid element evolves to a finite-
time divergence marked with unrestricted growth of strain and its pro-
duction. This is the first time a detailed explanation of the movement
of the fluid element within the (Q, R) phase space under the inertial
dynamics is presented in the literature for HIT.
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TABLE II. Values of M(QRE, RRE) for BIT and HIT.

Simulation M(Qgg, Rp)
HIT 1.9
BIT/VoF: US_3 25.7
BIT/IBM: US_; 24.8
BIT/VoF: QS_3 18.3
BIT/IBM: QS_; 19.2

Having looked at the mechanisms of fluid element evolution in
the (Q, R) phase space, let us now look at some quantitative results.
The magnitude of the Euler terms [i.e., M(Qgg, Rgg)] for HIT is given
in the first row of Table IL. This value agrees well with the litera-
ture,”**”**"” which in turn gives us the confidence that the condi-
tional averaging tool has indeed been developed in line with the
literature standards.

2. Bubble induced turbulence

Having established the behavior of inertial terms for HIT, let us
now focus on the bubbly flows. Figures 8(b) and 8(c) represent the
CMTs of inertial terms at the US_j station obtained using VoF and
IBM, respectively. These figures appear qualitatively similar to that of
HIT. As a result, the dynamics of inertial terms in VGT appear to be
that of the HIT. Yet, the magnitude of these quantities, as given in
Table 11, is much larger in BIT than in the HIT. One plausible explana-
tion for this large magnitude of inertial terms lies in the fact that at
this time instant, the vortex shedding has just started and this generally
gives rise to stronger vorticity while the rest of the domain is occupied
with strain. Another important result we obtain from Fig. 8 is that the
bubble topology, breakup and coalescence do not play any role in set-
ting the inertial dynamics at the small scales. This result is highly valu-
able for modeling small scale turbulence.

Finally, Fig. 10 presents the inertial dynamics of VGT at the
QS_; station where the bubble breakup and coalescence is nominal.
Figures 8 and 10 are identical, and we conclude that the dynamics of
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the fluid element when it is subject to no sources remain the same in
HIT as well as BIT and the bubble topology and deformation do not
influence the inertial dynamics. The only difference between HIT and
BIT regarding the inertial dynamics is once again noted in the magni-
tudes of the inertial terms as reported in Table II. Since the bubble
wakes have fully met at the QS_3 station, we tend to expect the inten-
sity of velocity gradients to reduce. This we notice in Table II, yet in
comparison with the HIT, the magnitude of inertial terms is still larger.
This makes us conclude that the BIT produces stronger velocity gra-
dients. One plausible explanation for this strong velocity gradients in
BIT is the disruptive presence of the bubbles that, in some sense, break
the uniformity of the flow and, thus, cause steep velocity gradients.

D. Pressure dynamics

1. Homogeneous isotropic turbulence

Having discussed the dynamics of the inertial term, this section
explains what happens to the time evolution of a fluid element when it
is subject to pressure effects. First, let us consider the case of HIT
whose CMTs for pressure dynamics are presented in Fig. 11(a). The
vector lines are almost parallel to each other moving from right to left.
We also note the finite-time divergence in the pressure dynamics as
the vector lines in Fig. 11(a) continues to the left indefinitely. It is gen-
erally believed that the pressure dynamics act as an opposing force
against the inertial dynamics.”” Evidence can be seen from Figs. 8(a)
and 11(a) that the vector lines of inertial and pressure dynamics
oppose each other. We discuss the pressure dynamics for two initial
conditions for fluid elements using the same simplified case presented
in Fig. 9 below.

As we observed earlier, the strain and its production continue to
increase for a fluid element in the (—Q, +R) phase space when there
is no source. This is because of two stretching directions as shown in
Fig. 9(b), which lead to more strain and reduction in vorticity. If we
consider the same fluid element in the same quadrant but are now
subject to a pressure source, the pressure dynamics act in such a way
that the preference for producing more strain for a strain-dominated
fluid element diminishes as the fluid element evolves in time. Due to
this, at some point in time, the fluid element evolves to the negative R
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FIG. 10. CMT of VGT inertial dynamics
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FIG. 11. CMT of VGT pressure dynamics obtained for (a) HIT, (b) VoF, and (c) IBM. The BIT sub-figures are plotted for the US_5 station.

side of the (Q, R) phase space. One might wonder how does the fluid
element stay strain-dominated while the tendency to produce strain
progressively diminished during its evolution. We need to understand
that, while opposing the inertial dynamics, the predominant nature of
the pressure Hessian is to generate deformations in the fluid element,
which in turn increases the strain."””’ Consequently, the tendency to
create strain diminishes and the enstrophy production becomes domi-
nant at some point during the evolution. The difference between mag-
nitudes of strain and vorticity remains almost constant as the pressure
Hessian produces strain while the fluid element also moves toward the
state where it tends to generate more enstrophy. Therefore, the fluid
element never moves downward in the (Q, R) phase space. Thus, this
element also moves toward to state where the magnitude of velocity
gradients become infinity.

Second, we consider a fluid element in the top-right quadrant
[ie, (+Q, +R) quadrant] of the (Q, R) phase space. As we saw earlier,
when there is no source, this fluid element tends to move down in the
(Q, R) phase space as it has more tendency to generate strain and to
reduce vorticity and due to this the strain magnitude increases making
the sign of the second invariant of VGT to change from positive to
negative. At the same time, we have just found out that the role of
pressure dynamics is to restrict the strain self-amplification mecha-
nism that produces strain. As a result, the fluid element in this quad-
rant when subject to pressure source does not move down in the (Q,
R) phase space. Rather, it moves to the left as the pressure Hessian
dampens the strain production mechanism making the third invariant
of the VGT change sign from positive to negative during the evolution.
During this, the magnitude of vorticity tends to increase as its produc-
tion increases, but, at the same time, the pressure Hessian deforms the
fluid element causing more strain. As such, the difference between the
strain and vorticity magnitudes remains the same during the evolu-
tion. Here also, the magnitude of velocity gradients continue to
increase and approach infinity as the fluid element evolves. These are
the mechanisms that Fig. 11(a) reveals through the vector lines.

The magnitude of pressure Hessian for HIT is given in the first
row of Table I1I. The magnitude of pressure dynamics is almost close

to that of inertial dynamics reminding us once again that they both act
against one another. The value in Table I1II is also consistent with the

literature')(x}/ 146,47

2. Bubble induced turbulence

Now, let us focus on BIT. Our goal here is twofold. Figures 11(b)
and 11(c) show the pressure dynamics for the BIT obtained using VoF
and IBM, respectively, for the US_; station. Comparing with Fig.
11(a), we see that the pressure dynamics of BIT look similar to that of
the HIT. Here also, the vector lines move from right to left in all the
quadrants of the (Q, R) phase space. Thus, the explanations rendered
before in this section are also applicable to BIT. Comparing Figs. 11(b)
and 11(c), we also learn that the pressure dynamics are independent of
breakup and coalescence as these two figures look relatively similar.
Looking at the magnitudes of the pressure dynamics for BIT in
Table III (the second and third rows), we see some intriguing differ-
ences concerning HIT. The magnitude of pressure dynamics in BIT is
way larger than in HIT. These values are similar to values reported in
the near-field of turbulence generated by a fractal grid.”® For them, the
location where they report very high values of pressure Hessian
dynamics is highly intermittent as the wakes from the turbulence-
generating grids start interacting with each other. Our station US_3 is
also marked by highly intermittent turbulence as the wakes behind the
bubbles have just started developing and start meeting intermittently

TABLE Ill. Values of M(Op, Rp) for BIT and HIT.

Simulation M(Qp,Rp)
HIT 2.1
BIT/VoF: US_; 105.6
BIT/IBM: US_3 100.5
BIT/VoF: QS_; 20.5
BIT/IBM: QS_3 21.1
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with one other. Therefore, it seems the intermittent nature of turbu-
lence with intense vortices leads to very high magnitudes of pressure
Hessian both in BIT and in the near-field of turbulence generated by a
fractal grid.

In the case of turbulence generated by a fractal grid, although the
magnitude of pressure Hessian dynamics was strong in the near-field,
the magnitude values become similar to that of HIT in the down-
stream.”® We see from Table 11 (see the last two rows of this table),
however, in BIT that the pressure Hessian magnitude never becomes
similar to that of HIT as the values for the station QS_3 also much
larger than that of HIT albeit that the values have decreased drastically
from US_; to QS_; stations. This shows that the dominance of pres-
sure Hessian is not simply due to intermittency but rather it appears
to be a feature related to strain-dominated flows. (Please refer to Paper
IT on the kinematic aspect of strain dominance in BIT.”’) We also
learn from Fig. 12 that the pressure dynamics remain the same as the
bubbles evolve irrespective of whether they undergo any deformation,
even in the QS_j; station.

E. Viscous dynamics

1. Homogeneous isotropic turbulence

We have seen in Secs. IV C and I'V D that the magnitude of VGT
tends to diverge in finite time. We might wonder if they ever get
reduced. This section presents the mechanism by which the magni-
tudes of VGT are reduced and eventually destroyed, and the mecha-
nism is viscous dissipation. This section deals with the viscous
dynamics of a fluid element, and we compare the results of BIT and
HIT along with studying the effects of breakup and coalescence in set-
ting up the viscous dynamics.

Figure 13(a) shows the dynamics of a fluid element when it is
subject to viscous effects for HIT. The story that Fig. 13(a) reveals is
very simple and intuitive. Irrespective of which quadrant the fluid ele-
ment is initially, it moves toward the origin of the (Q, R) phase space
as the element starts evolving in time. This is due to the action of vis-
cosity, which acts on the fluid element to dissipate the turbulent
kinetic energy and, thus, the velocity gradient magnitudes. We also see
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that most of the vector lines lie inside their quadrants. In terms of flow
physics, this paints the following picture.

Let us consider a fluid element with more enstrophy than strain
and more tendency to generate strain over the tendency to generate
vorticity [see Fig. 9(b)]. The moment this fluid element is subject to
viscosity; the viscosity will try to destroy all of its velocity gradients. To
that end, it will first stop the dominance of strain production and,
thus, reduce the magnitude of strain. Since the enstrophy production
of this element is negative and the vorticity is decreasing with the evo-
lution, the effect of viscosity on vorticity is minimum. Yet, the action
of viscosity on the enstrophy production is also to destroy it and, thus,
to reduce the magnitude of vorticity in that fluid element. Thus, if the
strain production is reduced by half during the evolution of the fluid
element by viscosity, then the enstrophy production is also reduced by
half. Consequently, the amount of strain and vorticity is also reduced
by half as the fluid element evolves. The result is that the element will
continue to stay vorticity-dominated with a preference to generate
more strain, but the magnitudes of these processes continually
decrease as the element evolves. Thus, the positive value of the second
VGT invariant remains positive but the value keeps coming down as
the element evolves. Similarly, the positive sign of the third VGT
invariant also remains positive but its magnitude keeps getting
reduced. The action of viscosity is complete when all the magnitudes
of the VGT are brought to nought. Thus, the values of the second and
third invariants of VGT eventually reduce to zero. Due to this, the
fluid element remains in the same quadrant of the (Q, R) phase space
throughout its evolution. This explanation is applicable for any fluid
elements irrespective of which quadrant of the (Q, R) phase space they
found themselves in.

The magnitude of the viscous dynamic term is shown in the first
row of Table I'V. Compared with the inertial and pressure dynamics,
the viscous dynamics are weak in terms of their magnitude and the
value of the magnitude agrees well with the literature,”*"***’

2. Bubble induced turbulence

Let us now look at the effect of breakup and coalescence on the
viscosity VGT dynamics of BIT. Figures 13(b) and 13(c) present the
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FIG. 12. CMT of VGT pressure dynamics
obtained for (a) VoF and (b) IBM at the
QS_3 station.
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FIG. 13. CMT of VGT viscous dynamics obtained for (a) HIT, (b) VoF, and (c) IBM. The BIT sub-figures are plotted for the US_5 station.

VGT dynamics of a fluid element subject to viscosity when the bubbles
undergo deformation and when bubbles do not undergo deformation,
respectively, at the US_j; station. The first observation from these fig-
ures is that the viscosity VGT dynamics of BIT appears to be similar to
that of the HIT as Figs. 13(b) and 13(c) also contain vector lines that
move toward the origin of the (Q, R) phase space and the most of the
vector lines seem to be in the same quadrant as the fluid element
evolves in time. Therefore, the physics of viscosity VGT dynamics of
HIT discussed before can easily be extended to the BIT. The only dif-
ference of bubbly VGT viscous dynamics to HIT appears in terms of
the magnitudes of the viscosity dynamics terms. Table I'V presents the
values of magnitudes of viscosity VGT dynamics for BIT in the second
and third rows of the table. As with the inertial and pressure dynamics,
the magnitudes of the viscosity dynamics also are quite large compared
with the HIT. Once again, this could be attributed to the fact that both
strain and vorticity are stronger at the QS_3 station and, thus, stronger
viscosity dynamics are required to smooth out these. Figures 13(b)
and 13(c) also make it clear that, once again, the bubble topology,
breakup, and coalescence play no role in determining the fine-scale
dynamics of BIT as we do not see any difference between these figures.

Finally, Fig. 14 presents the VGT dynamics of bubbly flows when
it is subject to viscosity at the QS_j station. At this station also, the vis-
cosity VGT dynamics of BIT appears to be the same as that of HIT
with bubble deformation does not influence the viscosity VGT dynam-
ics [compare Figs. 14(a) and 14(b)]. Since the magnitude of velocity

TABLE IV. Values of M(Ov, Rv) for BIT and HIT.

Simulation M(Qy,Ry)
HIT 0.2
BIT/VoF: US_; 6.5
BIT/IBM: US_; 6.3
BIT/VoF: QS_; 6.3
BIT/IBM: QS_s 6.3

gradients has reduced at this station, the magnitude of viscosity VGT
dynamics has come down at this station (see the last two rows of
Table V). Yet, the magnitudes are still much larger than the HIT.
These values also reveal that there is no influence of bubble breakup
and coalescence on the viscosity VGT dynamics.

F. Overall dynamics

1. Homogeneous isotropic turbulence

So far we have been looking at the VGT dynamics of a fluid ele-
ment when it is subject to no source and when it is subject to pressure
and viscous sources. To recall from the main results from Secs.
IV C-1V E, we know that the fluid element tends to evolve toward the
state of more strain over vorticity and more strain production over
enstrophy production when there is no source. We also found that the
action of pressure dynamics is mainly to oppose the strain production
while the pressure Hessian itself causes strain to generate. Finally, the
action of viscosity is to reduce the magnitude of the VGT dynamics
and eventually destroy them. This section presents results as to what
happens when all these effects are included as we track the fluid
element.

Figure 15(a) presents the overall VGT dynamics of HIT. The fig-
ure looks similar to the one reported in the literature.”*”*>*” Here,
the CMTs move cyclically toward the origin. Each shape of the CMTs
for every cycle resembles the shape of the joint probability density
between the second and third invariants of the VGT.

In terms of flow physics, the CMTs offer us the following expla-
nation. Let us consider a fluid element having more strain over vortic-
ity and more enstrophy production over strain production. When
there are no sources, this element would tend to evolve toward a state
where the strain production and strain increase indefinitely (ie.,
toward the right branch of D = 0 curve) as we noted earlier. The action
of pressure Hessian, however, averts such behavior as the pressure
dynamics act against the strain production. Thus, the pressure dynam-
ics acts as a constraint against strain increasing indefinitely. At the
same time, the viscous dynamics tend to pull the fluid element toward
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the origin of the (Q, R) phase space by reducing the VGT magnitude.
The cumulative effect is that the preference for enstrophy production
over strain production survives albeit with weak vorticity at the initial
time and as a result the enstrophy starts to build up during the evolu-
tion making the fluid element evolve toward a state where its strain
dominance is progressively reduced. Due to this, the element moves
from the (—Q,—R) quadrant to the (+Q, —R) quadrant. At this
quadrant, the element undergoes more vortex stretching, which in
turn makes the fluid element more dominating in vorticity. However,
the vortex stretching cannot increase forever as the vortex stretching
acts as a sink and the increase in stretching weakens strain which in
turn weakens the vortex stretching itself. Therefore, at some time, the
dominion of enstrophy production over strain production stops. At
this point, the fluid element has more vorticity and less strain. Since
the vortex stretching has reached its plateau, whatever the small
amount of strain available, it starts interacting with itself to generate

(b)

more strain which leads to strain production exceeding the enstrophy
production making the third VGT invariant positive. As a result, the
fluid element now finds itself in the (+Q, +R) quadrant. The mecha-
nism explained for inertial dynamics happen here. Eventually, the fluid
element is brought to the right-hand side of the D=0line. At this
point, the pressure dynamics kick in to oppose the inertial dynamics
and do not allow the strain production and strain to grow indefinitely.
Thus, the sign of the third invariant starts changing once the fluid ele-
ment evolves to the right-hand branch of D= 0. Then, the cyclic pro-
cess continues. Although the cyclic nature of CMTs gives an
impression that the magnitude of VGT continually decreases to zero
with an increase in time, we must be aware that the CMTs are time-
averaged quantities. This means that the instantaneous values of time
derivatives of Q and R are largely non-zero values but the time-
averaged conditioned values are zero. This has been proven by Elsinga
and Marusic.”
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FIG. 15. CMT of VGT overall dynamics obtained for (a) HIT, (b) VoF, and (c) IBM. The BIT sub-figures are plotted for the US_3 station.
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TABLE V. Values of M(Q, R) for BITand HIT.

Simulation M(Q,R)
HIT 14
BIT/VoF: US_3 79.3
BIT/IBM: US_3 78.5
BIT/VoF: QS_3 18.9
BIT/IBM: QS_3 18.8

The magnitudes of the overall dynamics are given in the first row
of Table V. This value agrees well with the literature.”*""***’

2. Bubble induced turbulence

Let us now focus on the overall VGT dynamics of BIT. We noted
in Secs. IV C-IV E that the individual inertial, pressure, and viscous
dynamics of BIT are qualitatively similar to that of HIT. We are in for
a surprise for the overall VGT dynamics of BIT as Figs. 15(b) and
15(c) show that the bubbly VGT dynamics are completely different
from that of the HIT. The important feature of bubbly VGT dynamics
is the presence of both stable node and unstable saddle points in the
phase space. The trajectories are no longer cyclic. Here, we see two
kinds of scenarios. The first case is when we consider any fluid element
in the (—Q, —R) quadrant under the D=0 line, this element evolves
to the state where the strain and its production increase strongly and
the trajectories move toward the unstable node, which is located
approximately at (R, Q) = (2, —3). Note that these values of Q and R
are non-dimensional values. Second, when we consider a fluid element
in the (+Q, —R) quadrant, this element also evolves toward the origin
at (R, Q) = (0, 0). A similar result was reported for the near field of the
grid generated turbulence where the wakes from the grid bars start
meeting intermittently.‘m Here, in the case of BIT also, we have a flow
that is dominated by the strain that is produced by non-local pressure.
It appears that the inertial effects overcome the pressure dynamics
when the strain in the fluid element is predominantly generated by the
non-local pressure. In other words, the pressure dynamics effect
becomes negligible in our case and in the case of turbulence generated
by a fractal grid. In fact, the overall VGT dynamics of BIT in Figs.
15(b), 15(c), 17(a), and 17(b) look exactly same as the one predicted
by the linear mean square estimation (LMSE)’' (see Fig. 2 in their
paper) where the pressure Hessian term was neglected. Therefore, we
postulate the following hypothesis. The role of pressure dynamics is
indeed to oppose the inertial VGT dynamics of a fluid element. When
the strain inside the fluid element is predominately generated by the
non-local pressure, the pressure Hessian becomes ineffective in
restricting the tendency to produce more strain as the pressure
dynamics see the fluid element’s strain as its own component. Once
this becomes clear, the physics in Figs. 15(b) and 15(c) also becomes
clear. If we consider a fluid element with more strain and a tendency
to produce more enstrophy, the pressure dynamics should have helped
this fluid element to oppose strain production and, thus, helped the
fluid element to move diagonally upward in the (Q, R) phase space. In
the BIT case, however, the strain inside the fluid element is already
due to the pressure dynamics. As a result, the pressure dynamics
decide not to oppose its own creation. Yet, there is the action of
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viscosity acting as a damping term to make the fluid element move
toward the origin. Thus, the fluid element continually moves toward
the origin. As discussed for HIT, in reality, the velocity gradients mag-
nitude would never be reduced to zero as the phase diagrams only rep-
resent the averaged values of the time derivatives of the second and
third invariants of the VGT.

The above explanation can also be applied when the fluid ele-
ment evolves to the right-hand branch of the D=0line from the
(+Q, —R) quadrant. Here also, the pressure dynamics is strong but
the strain inside the fluid element is already the result of the non-local
pressure and as a result, the role of the pressure dynamics here seems
to have reversed and it does not oppose the production of strain lead-
ing to fluid element moving upwards and evolving toward the unstable
saddle.

Our theory can further be strengthened when we look at the
combined dynamics of inertial and pressure effects on a fluid element.
Such dynamics for HIT is shown in Fig. 16(a). We know that both
inertial and pressure dynamics, when considered individually, would
result in finite-time divergence as they continue to produce large
velocity gradients. Therefore, the combination of pressure and inertial
dynamics also would be expected to exhibit finite-time divergence. We
get this intuitive result as the CMTs in Fig. 16(a) originate at the ori-
gin, and they move away from the origin indefinitely. We see an equal
tendency for the fluid element to diverge with more strain with its pro-
duction (i.e., toward the right-hand side branch of the D=0 curve)
and more vorticity with its production (i.e., toward the top left quad-
rant). The physics revealed in Fig. 16(a) informs us that the pressure
and inertial effects oppose each other equally.

Although the individual dynamics of pressure and inertial VGT
was observed to be the same with the HIT, the combination of them
for BIT differs drastically as shown in Fig. 16(b), which depicts such a
scenario in the VoF simulation at the US_3 station. The most striking
difference is that only a very few CMTs originate from the origin and
such CMTs eventually get attracted to the unstable saddle in the
D =0line. For other CMTs, they look much similar to that of the iner-
tial dynamics as they do not originate at the origin and they all move
toward a state where strain and its production is more preferred and,
thus, these CMTs continue to align along the D=0line as the fluid
element evolves in time. Now the physics is clear. The pressure
dynamics for BIT, albeit strong, do not perform their classical work as

B I T
R/(_Qs>-3/2
(a)

FIG. 16. CMT of VGT inertial and pressure dynamics obtained for (a) HIT and (b)
VoF at the US_3 station.
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FIG. 17. CMT of VGT overall dynamics
obtained for (a) VoF and (b) IBM at the
QS_3 station.

in the case of HIT. This is one of the important findings of this paper,
and this has huge ramifications for future studies.

In the case of multiscale grid turbulence, the non-cyclic behavior
disappeared once the wakes from the grid bars are fully met and the
turbulence is decaying. Therefore, we wanted to check if the observed
non-cyclic behavior in BIT disappears for a longer time. This is the
exact reason why we have been looking at stations QS_3; and US_;
throughout the paper. The overall VGT dynamics of BIT at the QS_3
station are given in Fig. 17. We see that the overall VGT dynamics do
not change from US_3 to QS_3 albeit that the flow at the station QS_3
is fully developed and the bubble wakes are fully mixed. Yet, the flow
keeps the memory from which it evolved even at the small scales ren-
dering non-cyclic behavior in the overall VGT dynamics.

When we compare Figs. 15(b) and 15(c), we note that the bubble
topology, breakup, and coalescence play no role in determining the
overall VGT dynamics as both VoF and IBM produce the same results.
This is further evidenced by the magnitude of overall VGT dynamics
presented in the second and third rows of Table V where values
obtained from VoF and IBM are similar. The table also ascertains our
previous observation that the strength of the VGT dynamics of BIT is
strong as we observe large values.

At the station QS_3 also, we see that the bubble deformation
does not affect the overall VGT dynamics as Figs. 17(a) and 17(b) are
nearly indistinguishable. This bolsters one of our important claims
that we do not have to worry about modeling the breakup and coales-
cence if our main interest is about studying the fine-scale dynamics of
BIT.

V. SUMMARY AND CONCLUSIONS

We studied the effect of bubble topology, breakup, and coales-
cence on the dynamics of velocity gradient tensor using numerical
simulations. We used the volume of fluid to simulate bubbly turbu-
lence, where the bubbles undergo breakup and coalescence and in the
immersed boundary method simulation where the bubbles neither
break up nor coalesce. We have also performed homogeneous isotro-
pic turbulence simulation to validate the postprocessing subroutines
we developed.

We observed that the energy spectra of VoF and IBM simulations
exhibit a —3 slope for more than a decade of wavenumbers range.
This result is consistent with the experimental findings. Since the flow
is developing in nature, we considered two temporal locations for our
study of fine-scale bubble turbulence dynamics. The first location is
where the energy spectrum starts exhibiting a —3 slope. This location
is also unsteady in nature. Thus, we called this location US_3. Once
the initial transients die out, the flow reaches a quasi-steady state with
a —3 slope in the energy spectrum. We explored this temporal location
as our second point of interest, and we called this location QS_3.

To understand the fine-scale dynamics of bubble-induced turbu-
lence, we looked at the VGT dynamics by tracing a single fluid ele-
ment. This tracking is carried out using the conditional averaging
method. The time-averaged values of time derivatives of the second
and third invariants in the (Q, R) phase space yield conditional mean
trajectory. We obtained CMTs by following a fluid element under the
influence of individual dynamics, such as inertial, pressure, and
viscous.

We found finite-time divergence of VGT dynamics when the
fluid element is subject to inertial and pressure dynamics. The finite-
time divergence in inertial dynamics is identified by the fluid element
evolving toward a state of infinite strain and its production. On the
contrary, the fluid element evolved toward a state of an infinite
amount of vorticity and strain along with their productions when it is
under the action of pressure dynamics. The viscosity acts on the fluid
element to destroy the velocity gradients. These individual VGT term
dynamics are consistent with the literature of HIT. Moreover, these
results are the same irrespective of the location of temporal evolution
(i.e., whether US_3 or QS_3) and the simulation type (i.e., VoF or
IBM). This shows that the bubble topology, breakup, and coalescence
play no role in setting up fine-scale dynamics.

When we looked at the overall VGT dynamics of a fluid element,
we observed an intriguing result for BIT. Although the individual
terms of VGT dynamics are similar to that of HIT, the overall dynam-
ics of BIT is entirely different from HIT. In HIT, the CMTs evolve
cyclically toward the origin but we observed a non-cyclic behavior in
BIT. After a careful analysis and gaining knowledge from relevant lit-
erature, we proposed that this difference is due to the nature of
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pressure dynamics in BIT. Although the pressure dynamics oppose
strain growing indefinitely in a fluid element, this action happens
only when the strain is not due to pressure effects. That is why the
pressure dynamics acts as a constraint for inertial dynamics when-
ever the amount of strain in a fluid element tries to increase toward
infinity in the case of HIT. On the contrary, since most of the strain
in BIT is due to non-local pressure, the pressure dynamics here fail
to do their classical role to oppose the inertial dynamics. This results
in non-cyclic behavior of overall dynamics in BIT. Interestingly,
although the results of BIT and HIT differ for overall dynamics,
both simulations (VOF and IBM) produce the same results meaning
that bubble topology, breakup, and coalescence are negligible for the
fine-scale BIT.

There are two important takeaways from this study. The fine-
scale VGT dynamics of BIT is not the same as that of HIT. This means
that we are in need of novel VGT models for bubbly flows. Second, we
do not have to worry about bubble topology, bubble breakup, and coa-
lesce when developing a fine-scale turbulence dynamics model for
BIT. Although we have studied only one void fraction, the recent study
by Mukherjee et al.” reports that similar fine-scale turbulence charac-
teristics can also be noted in void fractions as high as 45%. Therefore,
the results presented in this study may be generalized for any void
fraction, although further studies are needed to ascertain this.
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APPENDIX: FURTHER DETAILS ON NUMERICAL
METHODOLOGY

In this Appendix, we succinctly describe the numerical details
of the two methods used to perform DNS. In both cases, a constant
density ratio p,/p; = 1.2 x 107> has been adopted. The viscosity
ratio, only relevant to VoF since IBM does not really solve the gas
phase, is also a constant g, /i; = 1.5 x 1073,

1. Volume of fluid (VoF) method

In the VoF method, the sharp interface between two immisci-
ble fluids is determined using the VoF color function, C, which rep-
resents the volume fraction of the gas in each computational cell.
We solve the governing equations, Eqs. (1a) and (1b), throughout
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the whole computational domain, including the interior of the bub-
bles. The governing equations are discretized in space in an
Eulerian framework using the second-order central difference
scheme on a uniform staggered mesh.

A body force has been added in the direction of gravity to
ensure that the net momentum flux in the vertical direction is zero
(i.e., to prevent the uniform acceleration of both fluids). This modi-
fication has been used by other groups to simulate droplets and
bubbles in periodic, vertical channels.'”** In the VoF approach, the
source term in Eq. (1b) is f, = f,(x, f), the surface tension force,
which is computed by using Brackbill et al’s continuum surface
force approach,

f, = gwq (A1)

where p = (p; + p,)/2 and p; and p,, are the water and air densities,
respectively. The interface curvature x is computed using the height-
function method™ with improvements developed by Lépez et al.” The
equations are integrated in time using the second-order
Adams-Bashforth scheme, and the pressure is computed by solving
Poisson equation for which a combination of a two-dimensional fast
Fourier transforms (FFT) in the x—y plane and Gauss elimination in the
z-direction™ is used. This FFT-based method is 10-40 times faster than
the standard multigrid-based pressure-correction method. Finally, we
update the velocity field by applying pressure correction.

In our VoF method, the interface between the two fluids is
reconstructed using a piecewise linear interface calculation.”” The
volume fraction C is advanced in time using the Eulerian
implicit-Eulerian algebraic-Lagrangian explicit (EI-EA-LE) algo-
rithm originally proposed by Scardovelli et al.” and later improved
by Baraldi et al.”’ to ensure local and global mass conservation.
Using the improved EI-EA-LE algorithm, the cell-centered volume
fraction C is advected using the face-cent red velocity field u. The
method displays second-order spatial accuracy for values of
Courant-Friedrichs-Lewy number < 0.1. Furthermore, the average
geometrical error [E; = [C(x) — Cexact(x)|] is less than 1% for a
moving droplet with 30 grid cells or more across the diameter. The
complete description of the method and the results are reported by
Baraldi et al.”” Breakup and coalescence of fluid volumes are han-
dled implicitly by the VoF method. For example, if two interfaces
occupy the same computational cell during the VoF update from
time level n to n + 1, then the two VoF volumes are merged (or coa-
lesced) automatically. Likewise, when the thickness of a bubble liga-
ment falls below the grid spacing, h, it will break. It is worth
mentioning here that these breakup and coalescence in VoF are not
necessarily physical.

2. Immersed boundary method (IBM)

Rigid bubbles will be simulated using an Eulerian-Lagrangian
code®” with an implementation of the immersed boundary method
(IBM).*" The liquid matrix, as stated before, is described by solving
the Navier-Stokes equations; the diffusive and convective terms are
discretized by second-order central difference schemes, whereas a
three-step Runge-Kutta algorithm is adopted for the time derivatives.
The solver is based on a predictor—corrector method in which a mul-
tigrid algorithm solves the Poisson equation for the pressure field.
The dispersed phase—gas bubbles—are modeled as non-deformable
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spheres. The gas-liquid interface of each bubble is comprised of a col-
lection of N Lagrangian markers on which the coupling between
frameworks is solved. This model does not account for breakup nor
coalescence, assuming low void fractions and a significant presence of
surfactant (“dirty” bubble). The motion of the bubble’s centroid is
described by

Ou
my, aftb = PzLTdS + (pp = P Vb8, (A2)

where my, is the bubble mass, u, = up(¢) is the bubble centroid
velocity, V), is the bubble’s volume, g is the gravity acceleration, and
JsTdS = Jg[—éVp + vV2udS is the integral of the hydrodynamic
stress tensor T across the bubble’s surface. The latter is calculated
by integrating for forces over all the Lagrangian markers at the bub-
ble’s surface, following a similar procedure to Refs. 62 and 63.

At every time step, the position and velocity vectors for each
bubble are distributed among the CPUs using a master-slave mes-
sage passing interface (MPI)-based algorithm as described on Ouro
et al®® Since the bubble is non-deformable, only the centroid’s
properties are stored from one-time step to the next and the
Lagrangian markers that constitute the surface are re-built depend-
ing on the prescribed diameter. A no-slip condition is forced upon
the continuous phase velocity field at each one of the Lagrangians
that define the surface. This starts by interpolating the liquid veloci-
ties at the exact location of the Lagrangian points using third-order
delta functions”’

ng
UL = Zﬁ, . 5(X,‘ - XL)AVI:7 (A3)
i=1

where U is the interpolated liquid velocity at the point X, in
Lagrangian coordinates, u is the undisturbed Eulerian velocity, x; is
the Eulerian position vector, ng is the number of Eulerian neighbor-
ing nodes, AV is the cell volume, and ¢ is the interpolation delta
function. Once the Eulerian velocities are mapped at the Lagrangian
coordinates, the reaction force resulting from the no-slip condition
is calculated explicitly through Eq. (A4) for every Lagrangian,
llf;l — UL

F, = A (A4)
where u} ! is the bubble’s velocity at the previous time step. The
hydrodynamic stress tensor [[TdS is obtained by integrating all the
F; across all the Lagrangians defining the bubble’s interface.
The forward coupling (liquid-to-bubble) is completed by calculating
the resulting bubble velocity solving implicitly Eq. (A2). Once the
bubble centroids’ positions are updated, the backward (bubble-to-
liquid) coupling is achieved by calculating the forcing term f at
every Eulerian node within range (defined by the delta function’s
stencil) of the bubble,

nr

U, —u
£, = ;%5(& —x;)AVy, (A5)

where f; is the contribution to the momentum balance of the
Eulerian node i by #n; Lagrangian neighbors, At is the time step, and
AV}, is the volume of influence of each Lagrangian marker. This
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forcing term is used to correct the preliminary velocities before
applying the multigrid solver, which will ensure mass conservation
and provide the definitive Eulerian velocity field.

3. Homogeneous isotropic turbulence (HIT)

In the case of HIT, the forcing term in Eq. (1b) is a large-scale
forcing term. We use the reduced-communication forcing (RCF),
introduced by Onishi et al.,°® to simulate the HIT. Here, the govern-
ing equations are discretized using the finite difference scheme.
Then, a volume averaging is carried out which filters the small
scales. These volume averaged velocities are transformed into spec-
tral space, and they are forced in their large scales.
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