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 a b s t r a c t

We have developed a pressure-correction method, FastP∗PC, for simulating incompressible gas-
liquid flows with phase change, as an extension of FastP∗. The gas-liquid interface is captured 
using a volume-of-fluid (VoF) method that is mass conserving also in the presence of evaporation 
and condensation. The method relies on a divergence-free extrapolation of the gas- and liquid-
phase velocity fields in the vicinity of the interface between the two fluids. This allows using 
any VoF algorithm for incompressible flows while the resulting numerical solution automatically 
keeps the boundedness and conservation properties of the chosen VoF method. The approach also 
has the advantage of not requiring the solution of an additional Poisson or Helmholtz equation 
for the entire computational domain at each time step, which is often encountered in existing 
methods. The results show that the interface position is computed with a spatial accuracy between 
first and second order. The method also applies a normal-probe approach to compute the mass flux 
due to phase change with second-order accuracy. Furthermore, we present a novel discretization 
of the vapor-species mass conservation equation for interfacial flows with phase change and a new 
numerical method to solve the energy equation. The flow solver maintains a sharp representation 
of the interface in the sense that jumps in velocity, pressure, temperature gradient, and VoF 
function occur over only one computational cell. A new analytical solution for verification is 
presented for a one-dimensional Stefan flow problem with multi-component gas phase. We apply 
the method to a three-dimensional evaporating droplet in quiescent conditions and demonstrate 
that the droplet diameter follows the 𝐷2-law and that the solution approaches the analytical 
asymptotic value of the Sherwood number.

1.  Introduction

In this paper we consider incompressible gas-liquid flows in which the liquid phase is monocomponent (e.g. water) and the gas 
phase is bicomponent (e.g. air and water vapor) as shown in Fig. 1. The liquid phase is allowed to change phase – either through 
evaporation or condensation or both. The gas phase is assumed to be insoluble in the liquid phase. A particular challenge in simulating 
these flows numerically is to capture or track the gas-liquid interface during phase change. The main computational difficulty is that 
the fluid velocity is discontinuous across the gas-liquid interface leading to the discrete velocity field having local non-zero divergence 
(∇ ⋅ 𝐮 ≠ 0) . Also, the interface velocity is different than both the local liquid and gas velocities such that simply using the gas- or 
liquid-phase velocity to transport the interface would be incorrect.
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\begin {equation}\nabla \cdot \mbf {u} =\frac {1}{\mathrm {Re} \ \mathrm {Sc}} \lp \frac {1}{\rho _g} - \frac {1}{\rho _l} \rp \dot {m}'' \ \delta _\Sigma , \label {eq:continuity:evap}\end {equation}
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\begin {equation}\rho \lp \frac {\partial \mbf {u}}{\partial t} + (\mbf {u} \cdot \nabla ) \mbf {u} \rp = - \nabla p + \frac {1}{\mathrm {Re}} \nabla \cdot \lp \mu (\nabla \mbf {u} + \nabla \mbf {u} ^{T}) \rp + \frac {1}{\mathrm {We}} \mbf {f}_{\sigma }, \label {eq:momentum:evap}\end {equation}
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\begin {equation}\mbf {f}_{\sigma } = \kappa \mbf {n} \delta _\Sigma ,\end {equation}
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\begin {equation}\rho c_p \lp \frac {\partial T}{\partial t} + (\mbf {u} \cdot \nabla ) T \rp = \frac {1}{\mathrm {Re} \ \mathrm {Pr}} \left [ \nabla \cdot \lp k \nabla T \rp \right ] - \frac {1}{\mathrm {Re} \ \mathrm {Sc} \ \mathrm {Ste}} \dot {m}'' \delta _\Sigma , \label {eq:ene7:evap}\end {equation}
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\begin {equation}\frac {\partial Y_v}{\partial t} + (\mbf {u}_g \cdot \nabla ) Y_v = \frac {1}{\mathrm {Re} \ \mathrm {Sc}} \nabla ^2 Y_v, \label {eq:mass:vapor:evap}\end {equation}
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$\tilde {U}$


$\tilde {L}$


$\tilde {\rho }_g$


$\tilde {\mu }_g$


$\tilde {\sigma }$


$\tilde {c}_{p,g}$


$\tilde {k}_g$


$\tilde {T}_g$


$\Delta \tilde {h}_v$


$\tilde {D}_{gv}$


$\rho _g=1$


$\sim $


$\mbf {u}_\Sigma $


\begin {equation}\mbf {u}_{\Sigma } = (\mbf {u}_{\Sigma } \cdot \mbf {n}) \mbf {n} + (\mbf {u}_{\Sigma } \cdot \mbf {t}) \mbf {t}. \label {eq:intfc:vel}\end {equation}


\begin {equation}\rho _{g} (\mbf {u}_\Sigma - \mbf {u}_{g})\cdot \mbf {n} = \rho _l (\mbf {u}_\Sigma - \mbf {u}_l)\cdot \mbf {n} = \frac {1}{\mathrm {Re} \ \mathrm {Sc}} \dot {m}''. \label {eq:cont:2evap}\end {equation}
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\begin {equation}\mbf {u}_{\Sigma } \cdot \mbf {n} = \frac {1}{\mathrm {Re} \ \mathrm {Sc}} \frac {\dot {m}''}{2} \lp \frac {1}{\rho _l} + \frac {1}{\rho _g} \rp + \frac {1}{2} \lp \mbf {u}_l + \mbf {u}_g \rp \cdot \mbf {n}. \label {eq:intfc:normal}\end {equation}
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\begin {equation}\Delta t \leq \dfrac {1}{2} \mathrm {min} (\Delta t_c, \Delta t_\nu , \Delta t_\sigma , \Delta t_m, \Delta t_e), \label {eq:timestep}\end {equation}
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\begin {equation}\begin {aligned} \Delta t_c &= \dfrac {\Delta x}{|U|_{\mathrm {max}}} \\ \Delta t_\nu &= \dfrac {\mathrm {Re} \ \Delta x^2}{6} \\ \Delta t_\sigma &= \sqrt {\dfrac {\mathrm {We}(\rho _l + \rho _g) \Delta x^3}{4 \pi }} \\ \Delta t_m &= \dfrac {\mathrm {Re} \ \mathrm {Sc} \ \Delta x^2}{6} \\ \Delta t_e &= \dfrac {\mathrm {Re} \ \mathrm {Pr} \ \Delta x^2}{6}. \end {aligned} \label {eq:timestep:defs}\end {equation}
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\begin {equation}\frac {\partial \mbf {u}}{\partial t} = - \frac {1}{\rho } \nabla p + \mbf {RU}. \label {eq:momentum:compact}\end {equation}
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\begin {equation}\frac {\mbf {u}^*-\mbf {u}^n}{\Delta t} = \frac {3}{2} \mbf {RU}^n- \frac {1}{2} \mbf {RU}^{n-1}, \label {eq:projection1b:evap}\end {equation}


\begin {equation}\mbf {RU} ^n = -\mbf {u}_m^n \cdot \nabla \mbf {u}_m^n + \frac {1}{\rho ^{n+1}} \left \{ \frac {1}{\mathrm {Re}} \nabla \cdot \left [ \mu ^{n+1} \lp \nabla \mbf {u}_m^n + (\nabla \mbf {u}_m^n)^T \rp \right ] + \left [ \frac {1}{\mathrm {We}} \kappa ^{n+1} + \lp \frac {\dot {m}''}{\mathrm {Re} \ \mathrm {Sc}} \rp ^2 \lp \frac {1}{\rho _g} - \frac {1}{\rho _l} \rp \right ] \nabla H^{n+1} \right \} , \label {eq:projection1a:evap}\end {equation}
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\begin {equation}p_{\llbracket \mbf {u} \rrbracket } \propto \frac {\llbracket \mu \mbf {u} \cdot \mbf {n} \rrbracket }{h}, \label {eq:pressure:spike}\end {equation}
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\begin {equation}\frac {\mbf {u}^{n+1}-\mbf {u}^*}{\Delta t} = -\left [ \frac {1}{\rho _0} \nabla p^{n+1} + \lp \frac {1}{\rho ^{n+1}} - \frac {1}{\rho _0} \rp \nabla \hat {p} \right ], \label {eq:projection1c:evap}\end {equation}
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\begin {equation}\frac {1}{\rho ^{n+1}}\nabla p^{n+1} \rightarrow \frac {1}{\rho _0}\nabla p^{n+1} + \lp \frac {1}{\rho ^{n+1}} -\frac {1}{\rho _0} \rp \nabla \hat {p}, \label {eq:p:split:evap}\end {equation}
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\begin {equation}\nabla ^2 p^{n+1}=\nabla \cdot \left [ \lp 1 - \frac {\rho _0}{\rho ^{n+1}} \rp \nabla \hat {p} \right ] + \frac {\rho _0}{\Delta t} \left ( \nabla \cdot \mbf {u}^{*} - \nabla \cdot \mbf {u}^{n+1} \right ), \label {eq:poisson:evap}\end {equation}
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\begin {equation}\nabla \cdot \mbf {u}^{n+1} =\frac {1}{\mathrm {Re} \ \mathrm {Sc}} \dot {m}''^{(n+1)} \lp \frac {1}{\rho ^{n+1}_g} - \frac {1}{\rho ^{n+1}_l} \rp \lVert \nabla H^{n+1} \rVert , \label {eq:continuity:disc:evap}\end {equation}
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\begin {equation}\lVert \nabla C_s \rVert _{i,j} = \sqrt {\lp \frac {C_{s,i+1/2,j} - C_{s,i-1/2,j}}{ h} \rp ^2+ \lp \frac {C_{s,i,j+1/2} - C_{s,i,j-1/2}}{ h}\rp ^2}. \label {eq:delta:mag:CSF:Cs}\end {equation}
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\begin {equation}\frac {u_{i+1/2,j} - u_{i-1/2,j}}{h} + \frac {v_{i,j+1/2} - v_{i,j-1/2}}{h} =\frac {1}{\mathrm {Re} \ \mathrm {Sc}} \lp \frac {1}{\rho _g} - \frac {1}{\rho _l} \rp \dot {m}'' \sqrt {\lp \frac {C_{s,i+1/2,j} - C_{s,i-1/2,j}}{ h} \rp ^2+ \lp \frac {C_{s,i,j+1/2} - C_{s,i,j-1/2}}{ h}\rp ^2}. \label {eq:continuity:disc:evap:disc}\end {equation}
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\begin {equation}\frac {\partial H}{\partial t} + \mbf {u}_l \cdot \nabla H = - \frac {1}{\mathrm {Re} \ \mathrm {Sc}} \frac {\dot {m}''}{\rho _l} \delta _\Sigma . \label {eq:approach2:advect}\end {equation}
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\begin {equation}\nabla (\nabla \cdot \mbf {u}_l) = 0, \label {eq:div:diff:steady}\end {equation}
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\begin {equation}\rho _{i,j}c_{p,i,j} = \rho _lc_{p,l} C_{i,j} + \rho _g c_{p,g} (1- C_{i,j}). \label {Xeqn46-48}\end {equation}
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$T_\Sigma $


$x = L/2$

mailto:mchl.dodd@gmail.com
mailto:ptrefftz@uw.edu
mailto:ferrante@aa.washington.edu
https://doi.org/10.1016/j.jcp.2025.114252
https://doi.org/10.1016/j.jcp.2025.114252


M.S. Dodd, P. Trefftz-Posada, A. Ferrante

Fig. 1. Sketch of an incompressible gas-liquid flow with an evaporating droplet.

In the past, this additional complexity has been handled by extensions or modifications of interface-tracking and interface-
capturing algorithms for incompressible flow [1]. For example, the front-tracking method has been used for simulating droplet 
vaporization [2]. In [2], the mass flux is treated as a source term at the interface in the vapor mass fraction equation. As another 
example, the level-set method has been used for simulating boiling flows [3–5] and droplet vaporization [5,6]. In [3–5], the interface 
velocity is computed from the mass balance equation at the interface. The interface velocity is then used to advect the level set func-
tion. On the other hand, in [6], the level-set function is first advected by extending the liquid velocity into the gas phase and then the 
phase change is accounted for by adding a term that accounts for the surface regression velocity. In the first step, the extended liquid 
velocity is approximated using constant extrapolation and then projected onto divergence-free space to ensure that mass is conserved. 
This projection requires the solution of an additional Poisson equation for a pseudo-pressure field. A similar approach has been used 
with a volume of fluid (VoF) scheme for modeling the free-surface flow in the vicinity of bubbles [7]. More recently, an edge-based 
interface-tracking (EBIT) method has been extended to simulate multiphase flows with phase change in 2D with density ratio up to 
1600 [8]. The Dirichlet boundary condition for temperature at the interface is sharply imposed using the geometric information from 
the EBIT method. The ghost fluid method is used to address numerical instability that arise from the discontinuous velocity across 
the interface. The method shows second-order spatial accuracy in tracking the location of the interface in 1D test-cases, and for the 
bubble radius in 2D test-cases when compared with theoretical solutions or experimental results. However, the EBIT method does 
not guarantee mass conservation (reported errors in [8] are of (10−3, 10−4)), as it is a front-tracking method, and incurs density 
calculation errors from piecewise linear interface reconstruction used to compute the volume fraction [8].

The VoF method has also been applied to simulate film boiling and droplet evaporation [9–11]. One approach is to directly solve 
the continuity equation to update the fluid density and then compute the volume fraction from the cell density [12]. This method 
can be extended to flows with phase change by including a source or sink term in the continuity equation [9]. However, numerical 
diffusion leads to smearing of the interface over time. Another approach, that is justifiable for high liquid-gas density ratios, is to 
assume that the liquid velocity and interface velocity are equal. This assumption was used by [10] for simulating evaporating droplets 
with 𝜌𝑙∕𝜌𝑔 = (103). In [11], the VoF function is advected using a combination of the liquid and gas velocity, in which, to account for 
phase change, the authors introduce source and sink terms on either side of the interface to ensure mass conservation. These terms 
are smoothed by solving an inhomogeneous Helmholtz equation to achieve numerical stability. Recently, some VoF-based numerical 
methods have been developed for simulating multiphase flows with phase chage [13–23]. One difficulty of using VoF-based numerical 
methods for simulating phase change is that the VoF advection algorithms require a divergence-free velocity for mass conservation, 
and phase change at the interface causes the local velocity to have non-zero divergence. One approach for handling this difficulty is to 
extend the liquid velocity across the interface to achieve a divergence-free velocity for advecting the VoF function [18,20–23]. Even 
when using an extended liquid velocity to advect the VoF function, it is challenging to ensure mass conservation when simulating 
phase change. Some methods employ redistribution of the VoF field to ensure mass conservation [19,21–23]. The calculation of the 
mass flux term is another important term to be considered for numerical methods simulating phase change. Simulations are typically 
performed for the evaporation limit or boiling limit of vaporization. In the evaporation limit, the vaporization rate is assumed to 
be limited by the local values in the vapor species [19,20]. In the boiling limit, the vaporization rate is assumed to be limited by 
the local values in temperature [13,15–17,21–23]. In [18], a method was developed to simulate phase change without either of the 
limiting assumptions for the calculation of the mass flux, but poor convergence of the liquid velocity was observed. More recently, two 
methods were developed for simulating multicomponent droplet evaporation which address the challenges of coupling the transport 
equations of multiple species in the gas and liquid phases [24,25]. The VoF method for vaporizing multicomponent droplets in [25] 
shows second-order spatial accuracy in capturing the location of the interface in 1D test-cases, and for the bubble radius in 2D test-
cases using analytical solutions and other CFD studies, with density ratio up to 1600. However, for the case of density ratio equal to 
10 for which mass conservation is reported, the method has a mass conservation error of (10−1, 10−2).

Another important issue in developing a VoF-based solver for flows with phase change is to demonstrate grid convergence of the 
numerical solution and report its convergence rates. Previous studies have reported the convergence rates of a few flow variables. 
Table 1 provides, in chronological order, a summary of VoF-based numerical methods for simulating phase change in monocomponent 
fluids, and their order of spatial accuracy for different quantities. A variety of test cases were conducted for the reported references, 
so we include the highest order of convergence reported in their work. Table 1 shows the average order of convergence for the present 
work. One of the objectives of the present work is to present test cases in which the results can be compared with analytical solutions, 
while assessing the convergence rates for the interface position, evaporation rate, and profiles of temperature, velocity and vapor 
mass fraction. To that end, we provide a new analytical solution for the vapor mass fraction and energy equation, which can be used 
to establish the accuracy of methods for gas-liquid flows with evaporation and condensation.
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Table 1 
Summary of spatial orders of accuracy of VoF methods for monocomponent fluids with phase change for the 
following variables: mass, mass flux, temperature, vapor mass fraction, and velocity. For the cited references, the 
highest order of accuracy of their test-cases is reported, while for the present work we report its average values. 
Also, for the present work, 1D errors are computed using the 𝐿1 norm, and 2D errors are computed using the 𝐿2
norm.

 Reference  Spatial Order of Accuracy
 Mass  Mass Flux  Temperature  Vapor Mass Fraction  Velocity
 1D  2D  1D  1D  2D  1D  2D  1D  2D

 Lee et al. [13]  2  2  1  –  –  –  –  –  –
 Palmore & Desjardins [18]  –  –  –  1  1  1  1  1 < 1
 Scapin et al. [20]  –  –  2  –  –  –  –  –  –
 Germes Martinez et al.[21]  –  –  2  –  –  –  –  -  -
 Bureš & Sato [22]  1  1.5  –  –  –  –  –  –  –
 Present work 𝜀𝑚𝑎𝑐ℎ𝑖𝑛𝑒  3.51  2.19  0.98  1.47  2.09  1.39 𝜀𝑚𝑎𝑐ℎ𝑖𝑛𝑒  1.29

In the present work, for simulating incompressible gas-liquid flows with phase change, we have developed a pressure-correction 
method, FastP*PC, as an extension of the FastP* method [26], coupled with an extension of the VoF algorithm [27]. This VoF method 
uses a split advection scheme and conserves mass with an accuracy determined by the extent to which the liquid velocity field, used 
for the advection of the VoF function, is divergence-free in its discretized form. This condition is ensured through a new divergence-
free liquid velocity extrapolation procedure. Our objective is to advance the method to simulate incompressible flows with phase 
change with the aim that the algorithm has the following properties:

1. conserves mass to machine precision or to a specified tolerance, and maintains boundedness of the VoF function,
2. maintains a sharp representation of the interface,
3. requires no additional solutions for the entire computational domain of elliptic PDEs (i.e. Helmholtz or Poisson equations),
4. requires no smoothing or ad-hoc redistribution of mass source/sink terms at the interface,
5. capable of handling both evaporation and condensation,
6. parallelizes easily and efficiently.

When considering a bicomponent gas mixture, there is the additional challenge of solving the vapor mass conservation equation. 
In this work, we assume that the gas is insoluble in the liquid. Therefore the vapor mass fraction must only be solved for in the gas 
phase. At the interface, either a Dirichlet boundary condition may be applied [6] or a vapor source term is introduced using a discrete 
Dirac delta function [10]. Our method uses the Dirichlet boundary condition at the interface, but instead of using a second-order 
ghost-fluid method [28] as in [6], we present a new approach that can achieve an arbitrarily high order of accuracy. Furthermore, 
we introduce a new approach for computing the distance from the interface for VoF-based methods.

The paper is organized as follows: in Section 2, we present the governing equations for incompressible gas-liquid flows with phase 
change. Section 3 presents FastP∗PC, a coupled VoF and pressure-correction method used to solve the governing equations, which is 
an extension of the FastP∗ method [26] to flows with phase change. This section also includes a method for computing the mass flux 
due to phase change, and the discretization of the vapor mass fraction and energy equations. Section 4 presents the results obtained 
using FastP∗PC for several verification test-cases, including a new analytical solution of the 1D Stefan flow.

2.  Governing equations

We write the dimensionless governing equations for gas-liquid flows with phase change using the one-fluid formulation, under 
the following assumptions:

• both liquid and gas phase are incompressible,
• the liquid phase is monocomponent,
• the gas-phase is bicomponent, consisting of an inert gas and the liquid vapor,
• the gas is insoluble in the liquid,
• the production of internal energy by viscous dissipation is negligible.

A representative control volume containing the gas-liquid interface is shown in Fig. 2. It shows the gas phase, 𝑔 , and liquid phase, 
𝑙, separated by the interface, Σ.

Continuity equation:

∇ ⋅ 𝐮 = 1
Re Sc

(

1
𝜌𝑔

− 1
𝜌𝑙

)

�̇�′′ 𝛿Σ, (1)
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Fig. 2. Control volume (𝑡) containing an interface Σ(𝑡) separating the gas and liquid phases, 𝑔(𝑡) and 𝑙(𝑡), respectively.

which applies to 𝑔 , 𝑙, and Σ, where 𝐮 is the fluid velocity, 𝜌𝑔 and 𝜌𝑙 are the gas and liquid-phase densities, respectively, and �̇�′′ is 
the non-dimensional mass flux due to phase change,

�̇�′′ =
𝜌𝑔

1 − 𝑌𝑣
∇𝑌𝑣 ⋅ 𝐧, (2)

where 𝑌𝑣 is the vapor mass fraction, 𝐧 is a unit normal directed into the liquid phase, and 𝛿Σ is a surface Dirac 𝛿-function which 
is non-zero only at the interface (see Appendix B of [29] for a formal definition). We use the sign convention that �̇�′′ > 0 during 
evaporation and �̇�′′ < 0 during condensation. Eq. (2) is obtained from writing the total mass flux of the vapor as the sum of the convec-
tive mass flux due to Stefan flow and the diffusive mass flux described by Fick’s first law of diffusion, and solving such equation for �̇�′′.

Momentum equation:

𝜌
( 𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ ∇)𝐮
)

= −∇𝑝 + 1
Re

∇ ⋅
(

𝜇(∇𝐮 + ∇𝐮𝑇 )
)

+ 1
We

𝐟𝜎 , (3)

which applies to 𝑔 , 𝑙, and Σ, where 𝑝 is the pressure, 𝜇 is the dynamic viscosity, and 𝐟𝜎 is the non-dimensional force due to surface 
tension,

𝐟𝜎 = 𝜅𝐧𝛿Σ, (4)

where 𝜅 is the interface curvature.

Energy equation:

𝜌𝑐𝑝
( 𝜕𝑇
𝜕𝑡

+ (𝐮 ⋅ ∇)𝑇
)

= 1
Re Pr

[∇ ⋅ (𝑘∇𝑇 )] − 1
Re Sc Ste

�̇�′′𝛿Σ, (5)

which applies to 𝑔 , 𝑙, and Σ, where 𝑐𝑝 is the specific heat at constant pressure, 𝑇  is the temperature, 𝑘 is the thermal conductivity, 
and the last term is the sink (source) of internal energy due to evaporation (condensation).

Gas-phase vapor mass conservation equation:
𝜕𝑌𝑣
𝜕𝑡

+ (𝐮𝑔 ⋅ ∇)𝑌𝑣 = 1
Re Sc

∇2𝑌𝑣, (6)

which applies to 𝑔 , where 𝐮𝑔 is the gas phase velocity. The fluid properties, 𝜌, 𝜇, 𝑐𝑝, and 𝑘 are treated as constants in the gas and liquid 
phases, i.e. they are not temperature or mixture dependent. In Eqs. (1), (3), (5), and (6), Re, Sc, We, Pr, and Ste are the Reynolds, 
Schmidt, Weber, Prandtl, and Stefan numbers, respectively, defined as:

Re =
�̃� �̃��̃�𝑔
�̃�𝑔

, Sc =
�̃�𝑔

�̃�𝑔𝑣�̃�𝑔
, We =

�̃�𝑔�̃�2�̃�
�̃�

, Pr =
�̃�𝑔𝑐𝑝,𝑔
�̃�𝑔

, Ste =
𝑐𝑝,𝑔 �̃�𝑔
Δℎ̃𝑣

, (7)

where �̃� , �̃�, �̃�𝑔 , �̃�𝑔 , ̃𝜎, 𝑐𝑝,𝑔 , ̃𝑘𝑔 , �̃�𝑔 , Δℎ̃𝑣, and �̃�𝑔𝑣 denote, in order, the reference dimensional velocity, length, density, dynamic viscosity, 
surface tension coefficient, specific heat at constant pressure, thermal conductivity, temperature, latent heat of vaporization, and mass 
diffusivity of vapor in the gas phase used to non-dimensionalize the governing equations. The reference density, viscosity, specific 
heat, and thermal conductivity are chosen to be that of the gas, making their corresponding non-dimensional values unity in the gas 
phase (e.g., 𝜌𝑔 = 1). The reference temperature is chosen to be the initial ambient gas temperature, therefore the non-dimensional 
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temperature of the gas phase is initially unity. Throughout the paper, all variables are dimensionless unless they are accented
with ∼.

As depicted in Fig. 2, the interface velocity is denoted by 𝐮Σ and is commonly written in terms of its normal and tangential 
components as

𝐮Σ = (𝐮Σ ⋅ 𝐧)𝐧 + (𝐮Σ ⋅ 𝐭)𝐭. (8)

The continuity equation at the interface reduces to the jump conditions for the normal velocity across the interface

𝜌𝑔(𝐮Σ − 𝐮𝑔) ⋅ 𝐧 = 𝜌𝑙(𝐮Σ − 𝐮𝑙) ⋅ 𝐧 = 1
Re Sc

�̇�′′. (9)

Using Eq. (9), the normal component of 𝐮Σ can be written as

𝐮Σ ⋅ 𝐧 = 1
Re Sc

�̇�′′

2

(

1
𝜌𝑙

+ 1
𝜌𝑔

)

+ 1
2
(

𝐮𝑙 + 𝐮𝑔
)

⋅ 𝐧. (10)

3.  Numerical methods

The governing Eq. (1)–(6) are discretized on a staggered Cartesian grid in three dimensions (3D) with the 𝑢-component of velocity 
located at 𝐱𝑖+1∕2,𝑗,𝑘, the 𝑣-component at 𝐱𝑖,𝑗+1∕2,𝑘, the 𝑤-component at 𝐱𝑖,𝑗,𝑘+1∕2, and all other variables centered at 𝐱𝑖,𝑗,𝑘. The volume 
fraction field, 𝐶(𝐱, 𝑡), has value 𝐶 = 0 in the gas phase, 𝐶 = 1 in the liquid phase, and 0 < 𝐶 < 1 in computational cells containing 
the interface. For brevity, we will only present the 2D spatial discretization for the description of the numerical methods, while the 
results section includes 3D cases. All spatial derivatives are discretized using the second-order central difference scheme, except the 
normal gradient of the vapor mass fraction and the fluxes of vapor species near the interface, which will be discussed in Sections 3.4 
and 3.5, respectively. Fig. 3 summarizes the structure and ordering of the flow solver. The time step (Δ𝑡) must be restricted to ensure 
numerical stability. Δ𝑡 is calculated as

Δ𝑡 ≤ 1
2
min(Δ𝑡𝑐 ,Δ𝑡𝜈 ,Δ𝑡𝜎 ,Δ𝑡𝑚,Δ𝑡𝑒), (11)

where Δ𝑡𝑐 ,Δ𝑡𝜈 ,Δ𝑡𝜎 ,Δ𝑡𝑚 and Δ𝑡𝑒 are the maximum allowable time steps due to convection, momentum diffusion, surface tension, 
diffusion of vapor mass-fraction and diffusion of internal energy, respectively. These are determined as suggested in [20]:

Δ𝑡𝑐 =
Δ𝑥

|𝑈 |max

Δ𝑡𝜈 =
Re Δ𝑥2

6

Δ𝑡𝜎 =

√

We(𝜌𝑙 + 𝜌𝑔)Δ𝑥3

4𝜋

Δ𝑡𝑚 = Re Sc Δ𝑥2
6

Δ𝑡𝑒 =
Re Pr Δ𝑥2

6
.

(12)

3.1.  Fast pressure-correction method

To advance the momentum equation in time, we develop FastP∗PC, a pressure-correction methodology for flows with phase 
change, which is an extension of the FastP∗ method [26,30]. The advantage of this approach is that it reduces the Poisson equation 
that must be solved at each time step from variable- to constant-coefficient. Therefore, a direct, FFT-based Poisson solver can be used, 
which, in our experience, is at least ten times faster than iterative methods such as multigrid.

Eq. (3) is first written in a more compact form as
𝜕𝐮
𝜕𝑡

= −1
𝜌
∇𝑝 + 𝐑𝐔. (13)

We compute an approximate velocity field, 𝐮∗, by neglecting the pressure gradient in Eq. (13) and integrating in time using the 
second-order Adams-Bashforth scheme

𝐮∗ − 𝐮𝑛
Δ𝑡

= 3
2
𝐑𝐔𝑛 − 1

2
𝐑𝐔𝑛−1, (14)

where

𝐑𝐔𝑛 = −𝐮𝑛𝑚 ⋅ ∇𝐮𝑛𝑚 + 1
𝜌𝑛+1

{

1
Re

∇ ⋅
[

𝜇𝑛+1(∇𝐮𝑛𝑚 + (∇𝐮𝑛𝑚)
𝑇 )] +

[

1
We

𝜅𝑛+1 +
(

�̇�′′

Re Sc

)2( 1
𝜌𝑔

− 1
𝜌𝑙

)

]

∇𝐻𝑛+1

}

, (15)

where the relationship 𝛿Σ𝐧 = ∇𝐻 is used. The method for approximating the Heaviside step function, 𝐻 , will be discussed later in 
this section.
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Fig. 3. Flowchart of flow solver for simulating incompressible gas-liquid flows with phase change using the volume-of-fluid method and pressure-
correction method (FastP∗PC).

We also introduce the phase-wise extended velocity field 𝐮𝑚 for the liquid (𝑚 = 𝑙) and gas (𝑚 = 𝑔). These velocity fields (𝐮𝑚) 
are computed using the methodology that is described in Section 3.3. Because the momentum equation Eq. (3) is discretized using 
the central difference scheme for all computational cells, and therefore the finite-difference stencil overlaps liquid and gas velocity 
components in the vicinity of the interface, 𝐮𝑚 is required to compute the numerical fluxes 𝐑𝐔. For example, if left untreated, it can 
be noted from Eq. (3), that the presence of a velocity jump, J𝐮K, in the viscous term would lead to an artificial pressure spike at the 
interface that scales as

𝑝J𝐮K ∝
J𝜇𝐮 ⋅ 𝐧K

ℎ
, (16)

as shown by the numerical results in Section 4.1.1.
To decide whether 𝐮𝑙 or 𝐮𝑔 is used for a given computational cell when computing 𝐑𝐔, we compute the volume fraction of liquid 

at the staggered locations (e.g. 𝑥𝑖+1∕2,𝑗) and denote this field as 𝐶𝑠 as previously done in [30,31]. Fig. 4 depicts how 𝐶𝑠 is defined and 
calculated. To calculate 𝐶𝑠,𝑖+1∕2,𝑗 (see Fig. 4(a)), we define a control volume of side length ℎ (denoted by the dashed line), centered at 
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Fig. 4. Illustration of how the liquid volume fraction at staggered locations (𝐶𝑠) is calculated. The control volumes for the volume calculation are 
indicated by the red dashed lines. Volume that is included in 𝐶𝑠,𝑖+1∕2,𝑗 and 𝐶𝑠,𝑖,𝑗+1∕2 is indicated by the hatched regions.

𝑥𝑖+1∕2,𝑗 . We then calculate the area (volume in 3D) cut by the PLIC interface in the left half and the right half (denoted by hatches), 
and sum these contributions to get 𝐶𝑠,𝑖+1∕2,𝑗 . An analogous procedure is used to calculate 𝐶𝑠,𝑖,𝑗+1∕2 (Fig. 4(b)). In our solver, these 
operations are performed with the analytical tools of López and Hernández [32]. If 𝐶𝑠 < 0.5 in a computational cell, then 𝐮𝑔 is used to 
compute 𝐑𝐔 in Eq. (3), else 𝐮𝑙 is used. The staggered volume fraction field 𝐶𝑠 will prove to be useful in other portions of the solution 
algorithm.

The final velocity at the new time step, 𝐮𝑛+1, is obtained in the pressure-correction (projection) step
𝐮𝑛+1 − 𝐮∗

Δ𝑡
= −

[

1
𝜌0

∇𝑝𝑛+1 +
(

1
𝜌𝑛+1

− 1
𝜌0

)

∇�̂�
]

, (17)

where, as in [26], the pressure gradient is split into a constant-coefficient part (1∕𝜌0) and variable-coefficient part (1∕𝜌𝑛+1) [33], 
where the constant-coefficient part is treated implicitly and the variable-coefficient part explicitly as

1
𝜌𝑛+1

∇𝑝𝑛+1 → 1
𝜌0

∇𝑝𝑛+1 +
(

1
𝜌𝑛+1

− 1
𝜌0

)

∇�̂�, (18)

where 𝜌0 = min(𝜌𝑛+1) for numerical stability and �̂� is a second-order explicit approximation of 𝑝𝑛+1, i.e. �̂� = 2𝑝𝑛 − 𝑝𝑛−1. The pressure 
at the new time step, 𝑝𝑛+1, is obtained by solving the Poisson equation for pressure

∇2𝑝𝑛+1 = ∇ ⋅
[(

1 −
𝜌0
𝜌𝑛+1

)

∇�̂�
]

+
𝜌0
Δ𝑡

(

∇ ⋅ 𝐮∗ − ∇ ⋅ 𝐮𝑛+1
)

, (19)

where ∇ ⋅ 𝐮𝑛+1 is given by

∇ ⋅ 𝐮𝑛+1 = 1
Re Sc

�̇�′′(𝑛+1)

(

1
𝜌𝑛+1𝑔

− 1
𝜌𝑛+1𝑙

)

‖∇𝐻𝑛+1
‖, (20)

where we have used 𝛿Σ = ‖∇𝐻‖. The Heaviside step function 𝐻 is approximated using the continuum surface force (CSF) approach 
[34] such that 𝐻 is replaced by the volume fraction 𝐶. The resulting 2D CSF discretization of 𝛿Σ at cell centers is

‖∇𝐶‖𝑖,𝑗 =

√

(𝐶𝑖+1,𝑗 − 𝐶𝑖−1,𝑗

2ℎ

)2

+
(𝐶𝑖,𝑗+1 − 𝐶𝑖,𝑗−1

2ℎ

)2

. (21)

Because ∇ ⋅ 𝐮 is located at cell centers, Eq. (21) would need to be used in Eq. (20). This leads to relatively large smearing of the 
velocity jump over a characteristic thickness 2ℎ. Here we propose a new discretization that reduces the velocity jump thickness from 
2ℎ to ℎ, by using the staggered volume fraction field.

Using 𝐶𝑠, the resulting two-dimensional discretization of 𝛿Σ at cell-centered locations is

‖∇𝐶𝑠‖𝑖,𝑗 =

√

(𝐶𝑠,𝑖+1∕2,𝑗 − 𝐶𝑠,𝑖−1∕2,𝑗

ℎ

)2

+
(𝐶𝑠,𝑖,𝑗+1∕2 − 𝐶𝑠,𝑖,𝑗−1∕2

ℎ

)2

. (22)

Fig. 5 shows contours of ‖∇𝐶‖𝑖,𝑗 and ‖∇𝐶𝑠‖𝑖,𝑗 around a circular droplet. To summarize, our spatial discretization of Eq. (20) is

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
ℎ

+
𝑣𝑖,𝑗+1∕2 − 𝑣𝑖,𝑗−1∕2

ℎ
= 1

Re Sc

(

1
𝜌𝑔

− 1
𝜌𝑙

)

�̇�′′

√

(𝐶𝑠,𝑖+1∕2,𝑗 − 𝐶𝑠,𝑖−1∕2,𝑗

ℎ

)2

+
(𝐶𝑠,𝑖,𝑗+1∕2 − 𝐶𝑠,𝑖,𝑗−1∕2

ℎ

)2

. (23)
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Fig. 5. Contours of the two-dimensional discretization of 𝛿Σ illustrating the difference between using the (a) cell-centered discretization 𝐶 and (b) 
staggered discretization 𝐶𝑠.

3.2.  VoF advection in the presence of phase change

Our VoF scheme in the presence of phase change proceeds by advecting the Heaviside step function, 𝐻 , using the velocity of the 
reference phase (𝐻 = 1), i.e. the liquid-phase velocity, 𝐮𝑙, and includes a source term to account for phase change as

𝜕𝐻
𝜕𝑡

+ 𝐮𝑙 ⋅ ∇𝐻 = − 1
Re Sc

�̇�′′

𝜌𝑙
𝛿Σ. (24)

From Eq. (1), it is clear that the “one-fluid” velocity field, 𝐮, is not solenoidal in cells containing the interface. A necessary condition 
for Eq. (24) to conserve mass in discretized form is that the liquid velocity must be divergence-free in discretized form (∇ ⋅ 𝐮𝑙 = 0) 
including computational cells containing the liquid-gas interface. In the next section, we will describe how the liquid velocity field 
extension is computed for computing the divergence-free 𝐮𝑙 field used in Eq. (24).

3.3.  Divergence-free velocity extrapolation

In this section, we describe the method for extending the divergence-free gas- and liquid-phase velocities, 𝐮𝑔 and 𝐮𝑙, in the cells 
across the interface, i.e. where ||∇𝐶𝑠|| > 0 (see Fig. 6 for 𝐮𝑙). These extended velocity fields are needed for two purposes: first, to 
properly compute numerical fluxes in mixed liquid/gas cells as explained in Section 3.1 and, second, an extended divergence-free 
liquid velocity field is needed for the VoF advection scheme as described in Section 3.2 to capture the motion of the interface properly 
in the presence of phase change. A similar method was used to determine velocity boundary conditions for free surface fluid flows 
by [35]. Previous velocity extension methods project the liquid velocity field to a divergence-free space. This has the unphysical side 
effect of modifying the entire liquid velocity field after solving the conservation equations. The present method modifies only the 
extended velocities while preserving the velocity field within the liquid or gas (depending on the direction of the extension).

The method for extending the liquid-phase velocity (identical steps are used to extend the gas-phase velocity by interchanging the 
subscripts 𝑙 and 𝑔 in what follows) starts with solving an equation for the extended liquid velocity that: 1. is applied locally where 

Fig. 6. Illustration of the discretization employed in the divergence-free extrapolation methodology.
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the one-fluid velocity divergence is non-zero, i.e., light-blue cells in Fig. 6; 2. provides as its solution an extended liquid velocity, i.e., 
red arrows in Fig. 6, with zero divergence; 3. satisfies the BC’s for liquid velocity on the liquid side and zero-divergence on the gas 
side, i.e., solid blue line and solid red line, respectively, in Fig. 6. In order to satisfy these three conditions, and inspired by the work 
in astrophysics to extrapolate magnetic fields such that the resulting field satisfies Gauss’ law [36], in the cells where the divergence 
of the one-fluid velocity is non zero, we write the following equation,

∇(∇ ⋅ 𝐮𝑙) = 0, (25)

and boundary conditions,
𝐮𝑙|𝜕𝑙 = 𝐮(𝐱, 𝑡)

∇ ⋅ 𝐮𝑙|𝜕𝑔 = 0,
(26)

where 𝜕𝑙 is the surface of the interface on the liquid side from which the extension originates (blue line in Fig. 6) and 𝜕𝑔 is 
the surface of the interface on the gas side where the extension terminates (red line in Fig. 6). 𝜕𝑙 is defined as the intersection 
of computational cells where 𝐶 = 1 and ||∇𝐶𝑠|| > 0, and 𝜕𝑔 is defined as the intersection of computational cells where 𝐶 = 0 and 
||∇𝐶𝑠|| > 0. Fig. 6 also depicts the liquid velocity 𝐮 and the extended liquid velocity 𝐮𝑙 used for the discretization of Eq. (25) and 
where the boundary conditions, Eq. (26), are imposed in the vicinity of the liquid-gas interface. Eq. (25) imposes a zero gradient to 
the velocity divergence of the extended liquid velocity, and the BCs expressed in Eq. (26) leave 𝐮𝑙 unchanged on the liquid side, and 
impose zero divergence on the extended side in the gas phase. Thus, the solution of Eq. (25) with the BCs of Eq. (26) yields a solution 
for 𝐮𝑙 that satisfies ∇ ⋅ 𝐮𝑙 = 0 throughout the light blue region.

We discretize Eq. (25) using the second-order central difference scheme on a staggered Cartesian uniform mesh. For brevity, we 
report the spatial discretization in 2D for the 𝑢- and 𝑣-components of velocity. The extension to 3D and the 𝑤 component follows 
analogously from the 2D discretization. In 2D, the 𝑥− and 𝑦−components of Eq. (25) are discretized, respectively, as 

(

∇ ⋅ 𝐮𝑙
)

𝑖+1,𝑗 −
(

∇ ⋅ 𝐮𝑙
)

𝑖,𝑗 = 0, (27)

and 
(

∇ ⋅ 𝐮𝑙
)

𝑖,𝑗+1 −
(

∇ ⋅ 𝐮𝑙
)

𝑖,𝑗 = 0, (28)

where (∇ ⋅ 𝐮𝑙
)

𝑖,𝑗 is computed at the center of the (𝑖, 𝑗) cell. Then, using the second-order central discretization for the velocity diver-
gence in the equations above, and solving Eq. (27) for the staggered liquid velocity in the 𝑥−direction, (𝑢𝑙)𝑖+1∕2,𝑗 , yields

(𝑢𝑙)𝑖+1∕2,𝑗 =
1
2
[

(𝑢𝑙)𝑖+3∕2,𝑗 + (𝑢𝑙)𝑖−1∕2,𝑗 + (𝑣𝑙)𝑖+1,𝑗+1∕2 + (𝑣𝑙)𝑖,𝑗−1∕2 − (𝑣𝑙)𝑖+1,𝑗−1∕2 − (𝑣𝑙)𝑖,𝑗+1∕2
]

, (29)

and, solving Eq. (28) for the staggered liquid velocity in the 𝑦−direction, (𝑣𝑙)𝑖,𝑗+1∕2, yields

(𝑣𝑙)𝑖,𝑗+1∕2 =
1
2
[

(𝑣𝑙)𝑖,𝑗+3∕2 + (𝑣𝑙)𝑖,𝑗−1∕2 + (𝑢𝑙)𝑖+1∕2,𝑗+1 + (𝑢𝑙)𝑖−1∕2,𝑗 − (𝑢𝑙)𝑖−1∕2,𝑗+1 − (𝑢𝑙)𝑖+1∕2,𝑗
]

. (30)

The velocity extension algorithm begins by determining and storing the indices of velocities that must be extrapolated (red arrows 
in Fig. 6). The velocities with these stored indices are then updated iteratively using Eqs. (29) and (30) in conjunction with the 
pointwise Jacobi over-relaxation (JOR) method with a relaxation factor 𝜔 = 0.32. The initial guess for 𝐮𝑙 to start the iterations of JOR 
is the one-fluid velocity field, 𝐮. At the end of each iteration, we compute the velocity divergence at every extension cell (light-blue 
cells in Fig. 6), and we calculate the mean magnitude of the velocity divergence. The iterative solver proceeds until this mean falls 
below a specified tolerance. The VoF method’s mass conservation accuracy depends on the liquid velocity field’s discrete divergence-
free condition. A solver tolerance of 10−15 could theoretically achieve near-machine-precision mass conservation, but we use 10−10
for efficiency, yielding a 10−10 mass conservation error. This error is unrelated to numerical instabilities. JOR was chosen for ease 
of implementation, but the use of more efficient linear equation solvers is pursuable. It is important to note that Eq. (25) is only 
solved in a narrow region of width 2ℎ where ∇ ⋅ 𝐮 ≠ 0, such that the computational cost scales with the surface area of the liquid 
phase. For example, if we consider DNS of droplet-laden isotropic turbulence [37] with a droplet volume fraction of 5%, the number 
of unknowns in Eq. (25) would be 1.9% of the total number of grid points, therefore, this velocity extension step represents a very 
small percentage of the total computational cost.

3.4.  Computation of mass flux due to phase change

In this section we describe how to calculate the mass flow rate per unit area due to phase change Eq. (2) in cells containing the 
interface (0 < 𝐶 < 1). Instead of computing the gradient of 𝑌𝑣 and taking the normal projection as shown in Eq. (2), we compute the 
normal derivative directly as

�̇�′′ =
𝜌𝑔

1 − 𝑌𝑣

𝜕𝑌𝑣
𝜕𝑛

, (31)

using the normal probe approach similar to that of [38]. Consider Fig. 7 in which we have illustrated a typical computational cell 
in which �̇�′′ must be computed. The first point is located at the centroid of the PLIC interface, 𝑌𝑣,𝑠𝑎𝑡. From the 𝑌𝑣,𝑠𝑎𝑡 location, two 
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Fig. 7. Computational stencil for obtaining the normal gradient of 𝑌𝑣, 𝜕𝑌𝑣∕𝜕𝑛, in cells containing the gas-liquid interface. The first red point is 
located at the PLIC centroid and is at saturation conditions (𝑌𝑣,𝑠𝑎𝑡) and the two other red points, 𝑌𝑣,𝑝1 and 𝑌𝑣,𝑝2, are located in the gas phase at a 
distance ℎ and 2ℎ, respectively, from the interface in the normal direction. The values of 𝑌𝑣,𝑝1 and 𝑌𝑣,𝑝2 are calculated at the determined locations 
using Lagrange interpolating polynomials from the known values of 𝑌𝑣,𝑖,𝑗 at the cell centers (empty circles).

virtual probes, 𝑌𝑣,𝑝1 and 𝑌𝑣,𝑝2, are extended into the gas phase in the direction normal to the interface at a distance equal to ℎ and 2ℎ, 
respectively. Using the normal probe values, Eq. (31) is discretized using a one-sided second-order finite difference scheme

�̇�′′𝑛+1
𝑖,𝑗 =

𝜌𝑛+1

1 − 𝑌 𝑛
𝑣,𝑠𝑎𝑡

3𝑌 𝑛
𝑣,𝑠𝑎𝑡 − 4𝑌 𝑛

𝑣,𝑝1 + 𝑌 𝑛
𝑣,𝑝2

2ℎ
. (32)

The vapor mass fraction at the probe locations is computed using three-dimensional Lagrange interpolation. A second degree 
(quadratic) Lagrange interpolating polynomial is constructed by using the values of 𝑌𝑣 in the nearest nine grid (twenty-seven) nodes 
of 𝑌𝑣,𝑝1 in 2D (3D).

As previously mentioned, saturation conditions are assumed at the interface. Therefore, 𝑌𝑣,𝑠𝑎𝑡 is a function of the saturation 
pressure, 𝑝𝑠𝑎𝑡, which is found using the Clausius-Clapeyron relation

�̃�sat = �̃�boil exp
[

−
Δℎ̃𝑣�̃�𝑣

�̃�𝑢

(

1
�̃�sat

− 1
�̃�boil

)]

, (33)

where �̃�boil is the vapor pressure at the boiling temperature �̃�boil, �̃�𝑣 is the molar mass of the vapor, and �̃�sat is the saturation 
temperature. The non-dimensional form of Eq. (33) is

𝑝sat = exp
[

− 1
Stec

(

1
𝑇sat

− 1
𝑇boil

)]

, (34)

where �̃�boil and �̃�𝑔 , the initial ambient gas temperature, have been used as reference values for the non-dimensionalization, and where 
we have introduced a pseudo Stefan number defined as

Stec =
�̃�𝑢�̃�𝑔

Δℎ̃𝑣�̃�𝑣
, (35)

where �̃�𝑢 is the universal gas constant. Note that the saturation temperature 𝑇sat is calculated at the PLIC centroid in each cell. Because 
the PLIC centroid is off-grid, we use linear interpolation to approximate 𝑇sat from the neighboring cell centered values of 𝑇 . The mass 
fraction of saturated vapor at the gas-liquid interface is

𝑌𝑣,sat =
𝑝sat

𝑀𝑣
𝑀𝑎

𝑝sat
𝑀𝑣
𝑀𝑎

+ (1 − 𝑝sat )
, (36)
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where 𝑀𝑣∕𝑀𝑎 is the molar mass ratio of the liquid vapor and ambient gas.
As a final step, we must populate cells adjacent to the interface where ‖∇𝐶𝑠‖𝑖,𝑗 > 0 with an estimate of �̇�′′. This is done by taking 

the arithmetic mean of the non-zero values of �̇�′′ in the eight (twenty-six) neighboring cells in 2D (3D).

3.5.  Computation of the vapor mass fraction

The vapor mass fraction at the new time step, 𝑌 𝑛+1
𝑣 , is computed by integrating Eq. (6) in time using the first-order Euler scheme

𝑌 𝑛+1
𝑣 − 𝑌 𝑛

𝑣
Δ𝑡

= 𝑅𝑌 𝑛, (37)

where

𝑅𝑌 𝑛 = −(𝐮𝑛𝑔 ⋅ ∇)𝑌𝑣 +
1

Re Sc
∇2𝑌 𝑛

𝑣 . (38)

A first-order explicit scheme is chosen in Eq. (37) for two reasons: (i) the time integration of the VoF field is first-order accurate, and 
therefore using a higher-order time integration for 𝑌𝑣 would not increase the global accuracy, and (ii) the interface may, in general, 
cross into new computational cells, where the fluxes of 𝑌𝑣 at 𝑡 = 𝑡𝑛−1 are unavailable. If a second-order linear multistep method like 
Adams-Bashforth were adopted, it would need to switch to first-order for such events. When computing 𝑅𝑌 𝑛, if the finite difference 
stencil crosses into the liquid phase where there is no vapor, we switch to a one-sided finite difference stencil that is directed into the 
gas phase, i.e. only use values of 𝑌𝑣,𝑖,𝑗 in cells with 𝐶𝑖,𝑗 < 0.5. Our one-sided discretization will now be described in more detail.

The Dirichlet boundary condition 𝑌𝑣(𝑥 = Σ) = 𝑌𝑣,𝑠𝑎𝑡 requires that the spatial derivatives in Eq. (38) be calculated on a non-uniform 
grid because, in general, the interface does not coincide with the grid. Consider, for example, a one-dimensional case in which the 
interface is located between 𝑥𝑖−1 and 𝑥𝑖 as depicted in Fig. 8. The interface is located a distance 𝜃ℎ from 𝑥𝑖 and (1 − 𝜃)ℎ from 𝑥𝑖−1, 
where ℎ is the grid spacing and 𝜃 is the distance from the interface to 𝑥𝑖 normalized to the range [0,1]. The procedure for calculating 
𝜃 will be described later in this section. The 𝑚-th derivative of 𝑌𝑣 at 𝑥𝑖 is then calculated as

𝜕𝑚𝑌𝑣
𝜕𝑥𝑚

|

|

|

|𝑥=𝑥𝑖
= 𝛾𝑚𝑖,0𝑌𝑣,𝑠𝑎𝑡 + 𝛾𝑚𝑖,1𝑌𝑣,𝑖 + 𝛾𝑚𝑖,2𝑌𝑣,𝑖+1 + 𝛾𝑚𝑖,3𝑌𝑣,𝑖+2 + 𝛾𝑚𝑖,4𝑌𝑣,𝑖+3 (39)

on the stencil 𝑥 = 𝑥𝑖 + [−𝜃ℎ, 0, ℎ, 2ℎ, 3ℎ], with the derivative being calculated at 𝑥 = 𝑥𝑖. The finite difference weights 𝛾𝑚𝑖,𝑛 for the 𝑚-th 
derivative are calculated using the method described in [39]. In general, this scheme is at least fourth-order accurate for the first 
derivative and third-order accurate for the second derivative. Special care must be taken when 𝜃 << 1 since in the limit 𝜃 → 0 some 
of the 𝛾𝑖 coefficients go to infinity. Therefore, we limit use of Eq. (39) to 𝜃 ≥ 1∕4. If 𝜃 < 1∕4, we omit 𝑌𝑣,𝑖 and the derivatives are 
calculated as

𝜕𝑚𝑌𝑣
𝜕𝑥𝑚

|

|

|

|𝑥=𝑥𝑖
= 𝛾𝑚𝑖,0𝑌𝑣,𝑠𝑎𝑡 + 𝛾𝑚𝑖,1𝑌𝑣,𝑖+1 + 𝛾𝑚𝑖,2𝑌𝑣,𝑖+2 + 𝛾𝑚𝑖,3𝑌𝑣,𝑖+3. (40)

on the stencil 𝑥 = 𝑥𝑖 + [−𝜃ℎ, ℎ, 2ℎ, 3ℎ] with the derivative evaluated at 𝑥 = 𝑥𝑖. Eq. (40) is at least third-order accurate for the first deriva-
tive and second-order accurate for the second derivative. The extension of the above described 1D discretization to multidimensions 
is straightforward, and therefore has been left to the reader. The results in Section 4 correspond to the full 3D implementation.

We now address the problem of determining 𝜃. Unlike level-set methods where a signed distance function to the interface is 
tracked, VoF methods do not inherently contain this information. One possible solution is to use the height-function technique, e.g. 
[40]. However, we propose a novel solution for this particular problem. The idea is to use knowledge of the volume of liquid in 
control volumes centered at staggered locations 𝐶𝑠. From this staggered volume fraction field, one can estimate the distance between 
the interface and cell centers 𝑥𝑖,𝑗 . If we consider the example from Fig. 8 of the interface located between 𝑥𝑖−1 and 𝑥𝑖, 𝜃 is computed 
as

𝜃 = 1 − 𝐶𝑠,𝑖−1∕2, (41)

where this computation is exact for cases where one half of the staggered control volume is fully liquid, and the interface intersects 
only with the lateral sides of the second half of the staggered control volume.

Fig. 8. Computation of 𝑌𝑣 derivatives at the interface with Dirichlet boundary condition 𝑌𝑣,𝑠𝑎𝑡.
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For example, in the 2𝐷 configuration shown in Fig. 4(a), the interface is located between 𝐱𝑖,𝑗 and 𝐱𝑖+1,𝑗 , therefore, to calculate 
𝜕𝑥𝑌𝑣 at 𝐱𝑖+1,𝑗 , one would use

𝜃𝑥 = 1 − 𝐶𝑠,𝑖+1∕2,𝑗 , (42)

where 𝜃𝑥 is the distance between the interface and 𝐱𝑖+1,𝑗 , and the resulting finite-difference stencil would be 𝑥 = 𝑥𝑖+1 + [−𝜃𝑥ℎ, 0, ℎ,…]
if 𝜃𝑥 ≥ 1∕4 or 𝑥 = 𝑥𝑖+1 + [−𝜃𝑥ℎ, ℎ, 2ℎ,…] if 𝜃𝑥 < 1∕4. Considering Fig. 4(b) as our next example, the interface is located between 𝐱𝑖,𝑗
and 𝐱𝑖,𝑗+1, therefore, to calculate 𝜕𝑦𝑌𝑣 at 𝐱𝑖,𝑗+1, one would use

𝜃𝑦 = 1 − 𝐶𝑠,𝑖,𝑗+1∕2, (43)

where 𝜃𝑦 is the distance between the interface and 𝐱𝑖,𝑗+1, and the resulting finite-difference stencil would be 𝑦 = 𝑦𝑗+1 + [−𝜃𝑦ℎ, 0, ℎ,…]
if 𝜃𝑦 ≥ 1∕4 or 𝑦 = 𝑦𝑗+1 + [−𝜃𝑦ℎ, ℎ, 2ℎ,…] if 𝜃𝑦 < 1∕4.

3.6.  Computation of the temperature

The temperature at the new time step, 𝑇 𝑛+1, is found by integrating Eq. (5) in time using the second-order Adams-Bashforth 
scheme

𝑇 𝑛+1 − 𝑇 𝑛

Δ𝑡
= 3

2
𝑅𝑇 𝑛 − 1

2
𝑅𝑇 𝑛−1, (44)

where

𝑅𝑇 𝑛 = 𝑅𝐶𝑇 𝑛 + 𝑅𝐷𝑇 𝑛 + 𝑅𝑆𝑇 𝑛, (45)

where 𝑅𝐶𝑇 𝑛, 𝑅𝐷𝑇 𝑛, and 𝑅𝑆𝑇 𝑛 are, respectively, the convective, diffusive, and source terms on the right-hand side of the energy 
Eq. (5) at time 𝑡𝑛, defined as

𝑅𝐶𝑇 𝑛 = −𝐮𝑛𝑚 ⋅ ∇𝑇 𝑛

𝑅𝐷𝑇 𝑛 = 1
𝜌𝑛+1𝑐𝑛+1𝑝

1
RePr

[

∇ ⋅ (𝑘𝑛∇𝑇 𝑛)
]

𝑅𝑆𝑇 𝑛 = − 1
𝜌𝑛+1𝑐𝑛+1𝑝

1
Ste

�̇�𝑛
‖∇𝐶𝑛

𝑠 ‖.

(46)

We discretize the terms in Eq. (46) using second-order central differences. The discretization of 𝑅𝐶𝑇 𝑛 is standard and equivalent to 
what is done in single-phase flow. We present a novel discretization of 𝑅𝐷𝑇 𝑛 and 𝑅𝑆𝑇 𝑛 here in 2D. 𝑅𝐷𝑇 𝑛 is discretized as follows 
(where we omit the time level 𝑛)

𝑅𝐷𝑇𝑖,𝑗 =
1

𝜌𝑖,𝑗𝑐𝑝,𝑖,𝑗
1

RePr

[𝑘𝑖+1∕2,𝑗 (𝑇𝑖+1,𝑗 − 𝑇𝑖,𝑗 ) − 𝑘𝑖−1∕2,𝑗 (𝑇𝑖,𝑗 − 𝑇𝑖−1,𝑗 )

ℎ2
+

𝑘𝑖,𝑗+1∕2(𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗 ) − 𝑘𝑖,𝑗−1∕2(𝑇𝑖,𝑗 − 𝑇𝑖,𝑗−1)

ℎ2

]

,

(47)

where 𝜌𝑖,𝑗𝑐𝑝,𝑖,𝑗 is calculated using the arithmetic mean
𝜌𝑖,𝑗𝑐𝑝,𝑖,𝑗 = 𝜌𝑙𝑐𝑝,𝑙𝐶𝑖,𝑗 + 𝜌𝑔𝑐𝑝,𝑔(1 − 𝐶𝑖,𝑗 ). (48)

To calculate the staggered thermal conductivities in Eq. (47), we leverage the staggered volume fraction field 𝐶𝑠 as
𝑘𝑖+1∕2,𝑗 = 𝑘𝑙𝐶𝑠,𝑖+1∕2,𝑗 + 𝑘𝑔(1 − 𝐶𝑠,𝑖+1∕2,𝑗 )

𝑘𝑖,𝑗+1∕2 = 𝑘𝑙𝐶𝑠,𝑖,𝑗+1∕2 + 𝑘𝑔(1 − 𝐶𝑠,𝑖,𝑗+1∕2).
(49)

Compared to using the standard practice of taking the arithmetic mean of cell centered transport properties to obtain face centered 
properties, i.e. 𝑘𝑖+1∕2,𝑗 = 1

2 (𝑘𝑖+1,𝑗 + 𝑘𝑖,𝑗 ), Eq. (49) leads to a sharper representation of the discontinuity in the temperature gradient 
near the interface because the thermal conductivity transitions between 𝑘𝑙 and 𝑘𝑔 over a distance ℎ instead of 2ℎ.

𝑅𝑆𝑇 𝑛 is discretized as follows

𝑅𝑆𝑇𝑖,𝑗 = − 1
𝜌𝑖,𝑗𝑐𝑝,𝑖,𝑗

1
Re Sc Ste

�̇�𝑛
𝑖,𝑗

[

(𝐶𝑠,𝑖+1∕2,𝑗 − 𝐶𝑠,𝑖−1∕2,𝑗

ℎ

)2

+
(𝐶𝑠,𝑖,𝑗+1∕2 − 𝐶𝑠,𝑖,𝑗−1∕2

ℎ

)2]1∕2

. (50)

Note that using the staggered volume fractions to discretize the regularized Dirac 𝛿 function in Eq. (46) as shown in Eq. (50) leads to 
less numerical smearing of the source term in Eq. (5).

4.  Results

The numerical method presented in Section 3 is implemented in a 3D flow solver. We consider several 1D, 2D, and 3D test 
problems to verify and validate the flow simulations. We first verify the VoF advection scheme in the presence of phase change 
that was presented in Section 3.2 by simulating a 1D evaporating pool and 2D evaporating and condensing droplets with a constant 
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evaporative mass flux, �̇�′′, for which analytical solutions are available. This case is also used to demonstrate the divergence-free 
extrapolation methodology presented in Section 3.3. Second, we verify the computation of the vapor mass flux presented in Section 3.4 
and report the computed order of accuracy. Next, a 1D Stefan flow is considered with a stationary interface for which we have derived 
an analytical solution for the temperature and vapor mass fraction profile. This case is used to test the discretization of the vapor 
mass-fraction and energy equations, Eqs. (6) and (5), presented in Sections 3.5 and 3.6, respectively, in which the temperature 
and vapor-mass fraction fields are solved for. Finally, we verify the fully coupled 3D solver for an evaporating droplet in quiescent 
conditions and compare the results with the 𝐷2-law.

4.1.  Verification of VoF advection with constant mass flux

The objective of this section is to verify the accuracy of the method described in Section 3.2. We select test cases in which �̇�′′ is 
set to a constant and the geometry of the gas-liquid interface is known exactly, allowing us to derive an analytical expression for the 
total volume of the liquid phase (VoF volume) as a function of time.

4.1.1.  Evaporation of a liquid pool
We consider a 1D domain that contains one half gas and one half liquid separated by an interface as shown in Fig. 9. The lower 

boundary is a wall and the upper boundary is an outflow plane. The liquid remains at rest (𝑢𝑙 = 0) as the interface moves towards the 
wall. Using Eq. (9), it can be derived that the gas velocity is

𝑢𝑔 = 1
Re Sc

�̇�′′
(

1
𝜌𝑔

− 1
𝜌𝑙

)

. (51)

The height of the interface is found starting from the mass balance equation at the interface Eq. (9). By integrating the interface 
velocity, 𝑢Σ, we derive that the height of the interface evolves as

ℎ(𝑡) = ℎ0 −
1

Re Sc
�̇�′′

𝜌𝑙
𝑡, (52)

where ℎ0 is the initial height.
For our test, we use a domain of length 𝐿 = 1 discretized using 32 points, and the interface initialized at ℎ0 = 0.5. The non-

dimensional parameters are Re = 200, Sc = 1, �̇�′′ = 30, 𝜌𝑙∕𝜌𝑔 = 4, and 𝜇𝑙∕𝜇𝑔 = 4. The fluids are initially at rest.
Fig. 10 shows the time development of the interface height, ℎ(𝑡), and the gas-phase velocity, 𝑢𝑔(𝑡). For both, there is excellent 

agreement between the exact and numerical solution. In fact, the solutions agree to machine precision. Something to notice is that 
𝑢𝑔(𝑡) remains constant even as the interface crosses grid nodes. This demonstrates that imposing the velocity jump by discretizing 
the 𝛿-function as Eq. (21) yields an exact balance of mass flux across the interface. Fig. 11(a) shows the presence of pressure spikes 
occurring near the interface at the first time step, and, which occur at every time-step, if the numerical fluxes Eq. (15) are calculated 
using the “one-fluid” velocity 𝐮 instead of the phase-wise extended velocity 𝐮𝑚 Fig. 11(b). We have tested other grid sizes and density 
ratios up to 10,000 and found that the solution agrees to machine precision for all cases.

4.1.2.  Evaporation and condensation of a 2D droplet
We consider a 2D square domain with a wall on the left, right, and bottom boundary and an outflow on the top boundary. We 

initialize a circular droplet in the center of the domain and release it from rest in quiescent fluid. We impose a constant evaporative 
mass flux, �̇�′′, such that Stefan flow is generated around the droplet. The Stefan flow propels the droplet away from (towards) the 
bottom wall in the case of evaporation (condensation). If the droplet remains circular (i.e. if the Weber number is sufficiently smaller 
than unity) then the normalized droplet diameter evolves in time as

𝐷(𝑡)
𝐷0

= 1 − 1
Re Sc

2
𝐷0

�̇�′′

𝜌𝑙
𝑡. (53)

Fig. 9. Domain for 1D pool evaporation with constant �̇�′′.
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Fig. 10. Comparison of the numerical and analytical solutions for the time evolution of (a) the interface height ℎ(𝑡), Eq. (52), and (b) the gas-phase 
velocity 𝑢𝑔(𝑡), Eq. (51), for the evaporation of the liquid pool problem (Fig. 9).

Fig. 11. Pressure contours at the first time step for the evaporation of the liquid pool problem (Fig. 9) illustrating the difference between computing 
the numerical fluxes 𝐑𝐔 with (a) the “one-fluid” velocity 𝐮, and (b) the phase-wise extended velocity 𝐮𝑚. The white line is a 𝐶 = 0.5 isocontour 
representing the gas-liquid interface.

For the test, we use a domain of length 𝐿 = 1 discretized using 1282 points. The initial droplet diameter is 𝐷0 = 0.25. The non-
dimensional parameters are Re = 50, Sc = 1, We = 1, �̇�′′ = 25 for the evaporating droplet and �̇�′′ = −25 for the condensing droplet, 
𝜌𝑙∕𝜌𝑔 = 10, 50 and 100, and 𝜇𝑙∕𝜇𝑔 = 1, 5 and 10, respectively, such that 𝜈𝑙∕𝜈𝑔 = 0.1 for all cases. Note that the droplet Weber number 
based on the initial gas phase velocity (We𝐷 = 𝜌𝑔𝑢2𝑔𝐷∕𝜎, where 𝑢𝑔 is given by Eq. (51)) varies from We𝐷 = 0.05 for 𝜌𝑙∕𝜌𝑔 = 10 to 
We𝐷 = 0.06 for 𝜌𝑙∕𝜌𝑔 = 100, and hence, We𝐷 ≪ 1 which justifies the use of Eq. (53).

Fig. 12 shows the time development of (𝐷(𝑡)∕𝐷0)2 for the evaporating and condensing droplets at the various density ratios. In all 
cases, there is excellent agreement between the numerical and analytical solutions. These results demonstrate that the VoF advection 
algorithm for phase change presented in Section 3.2 is mass conserving. Table 2 shows the error in the mass (𝐸𝑚 = |𝑚sim − 𝑚exact |) as 
function of the grid spacing Δ𝑥 (= 1∕𝑁). 𝑚exact is determined from the normalized droplet diameter in Eq. (53). The table shows that 
the mass is above second-order accurate.

Fig. 13 and 14 show the velocity vectors for the 𝜌𝑙∕𝜌𝑔 = 10 cases at three different times (𝑡 = 0, 0.25, and 0.5). The figures show 
that our implementation of the ∇ ⋅ 𝐮 source/sink term in Eq. (1) leads to a sharp jump in the normal velocity at the interface as 
expected. Also, the Stefan flow generated by the evaporation or condensation process causes the droplet to be propelled away from or 
towards the wall, respectively. The droplet maintains a circular shape as it travels away from or towards the wall and while shrinking 
or growing in size. These figures demonstrate the ability of the VoF advection algorithm described in Section 3.2 to accurately capture 
evaporating and condensing droplets while in motion.

Table 2 
Error in the mass as a function of the grid spacing 
Δ𝑥 for an evaporating 2D droplet.
   Δ𝑥 𝐸𝑚  Rate 
  1/64  6.98e-4  –  
  1/128  7.07e-5  4.93 
  1/256  1.70e-5  2.08 
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Fig. 12. Comparison of numerical and analytical solution, Eq. (53) of the time evolution of the normalized droplet diameter squared for (a) an 
evaporating 2D droplet and (b) condensing 2D droplet surrounded by three walls. The solutions are shown for density ratios of 10, 50, and 100.

Fig. 13. Velocity vectors around the evaporating 2D droplet with 𝜌𝑙∕𝜌𝑔 = 10 at 𝑡 = 0, 0.25, and 0.5. The black line is a 𝐶 = 0.5 isocontour representing 
the gas-liquid interface.

Fig. 14. Velocity vectors around the condensing 2D droplet with 𝜌𝑙∕𝜌𝑔 = 10 at 𝑡 = 0, 0.25, and 0.5. The black line is a 𝐶 = 0.5 isocontour representing 
the gas-liquid interface.
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Fig. 15 and 16 show a close-up of the velocity vectors and their respective divergence for the 𝜌𝑙∕𝜌𝑔 = 10 cases at 𝑡 = 0. The figures 
show the velocity field of the liquid and gas phase before and after the divergence-free extrapolation methodology described in 
Section 3.3. The figures show that, after extension, the velocity jump is effectively removed and the resulting velocity field satisfies 
∇ ⋅ 𝐮 = 0 both in the liquid and gas near the droplet surface. These figures demonstrate the ability of our novel divergence-free 
extrapolation technique described in Section 3.3 to accurately extend the velocity field in the liquid and gas phase and in the presence 
of evaporation and condensation.

4.2.  Verification of mass flux computation

To verify the accuracy of the mass flux computation that was described in Section 3.4, we consider a 1D Stefan flow in the domain 
depicted in Fig. 9. We assume isothermal conditions and infinite Stefan number such that the energy equation can be neglected for 
this case. The vapor mass fraction field has Dirichlet boundary conditions applied at the gas-liquid interface and the outflow plane. 
We assume that 𝜌𝑙∕𝜌𝑔 = ∞ such that the interface remains stationary (𝐮Σ = 0) as the liquid evaporates (this can be deduced from 
Eq. (9)). Under these assumptions, we have derived analytical solutions for 𝑌𝑣(𝑥) and �̇�′′. In this section we only focus on �̇�′′, and 
will return to verifying 𝑌𝑣(𝑥) in the next section. The analytical mass flux is

�̇�′′
exact =

𝜌𝑔
𝐿𝑔

ln
( 1 − 𝑌𝑣,𝐿
1 − 𝑌𝑣,𝑠𝑎𝑡

)

, (54)

where 𝐿𝑔 is the distance from the interface to the outflow plane, and 𝑌𝑣,𝐿 and 𝑌𝑣,𝑠𝑎𝑡 are the vapor mass fractions at the outflow plane 
and the interface, respectively.

The conditions for the test are 𝐿𝑔 = 0.5, Re = 200, Sc = 1, 𝑌𝑣,𝐿 = 0, 𝑌𝑣,𝑠𝑎𝑡 = 0.5, 𝜌𝑙∕𝜌𝑔 = ∞, and 𝜇𝑙∕𝜇𝑔 = 4. We initialize 𝑌𝑣 = 0 in 
the gas phase and then integrate in time until 𝑌𝑣(𝑥) reaches the steady-state solution. When 𝑌𝑣(𝑥) reaches steady-state, we compute 
�̇�′′. We performed tests on three different grids, 𝑁 = 16, 32, and 64. Table 3 shows the error in the mass flux (𝐸�̇�′′ = |�̇�′′

sim − �̇�′′
exact |) 

as function of the grid spacing Δ𝑥 (= 1∕𝑁). The table shows that the mass flux calculation (Eq. (32)) is second-order accurate.

4.3.  Verification of the vapor mass fraction and temperature fields

In this section we verify the accuracy of the methods for solving the vapor mass fraction and temperature fields as described in 
Sections 3.5 and 3.6. We consider the 1D Stefan flow problem illustrated in Fig. 17. Dirichlet conditions for vapor mass fraction and 
temperature are applied at the outflow boundary. At the lower wall, a Dirichlet boundary conditions is applied for temperature. At 
the interface, a Dirichlet boundary condition is applied for the saturated vapor mass fraction. Under these assumptions, we have 
derived a new analytical solution for the vapor mass fraction field in the gas phase and the temperature field in the gas and liquid 

Fig. 15. Detail of the liquid- and gas-velocity vectors and their respective divergence around the evaporating droplet with 𝜌𝑙∕𝜌𝑔 = 10 at 𝑡 = 0. The 
quantities are shown before and after the divergence-free velocity extension procedure described in Section 3.3.
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Fig. 16. Detail of the liquid- and gas-velocity vectors and their respective divergence around the condensing droplet with 𝜌𝑙∕𝜌𝑔 = 10 at 𝑡 = 0. The 
quantities are shown before and after the divergence-free velocity extension procedure described in Section 3.3.

Table 3 
Error in the vaporization rate per unit area 𝐸�̇�′′  as a func-
tion of the grid spacing Δ𝑥 for 1D Stefan problem.
   Δ𝑥 𝐸�̇�′′  Rate 
  1/16  3.30e-3  –  
  1/32  7.49e-4  2.20 
  1/64  1.73e-4  2.17 

phases. The derivation for the analytical solution of the temperature field is presented in Appendix A. The solution for the vapor mass 
fraction field is

𝑌𝑣(𝑥) = 1 − (1 − 𝑌𝑣,𝑠𝑎𝑡)
( 1 − 𝑌𝑣,𝐿
1 − 𝑌𝑣,𝑠𝑎𝑡

)(2𝑥−1)∕𝐿

, (55)

where 𝐿 is the length of the gas-liquid domain and the gas-liquid interface is located at 𝑥 = 𝐿∕2.

Fig. 17. Domain for 1D Stefan flow.
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The solution for the temperature at the interface (𝑥 = 𝐿∕2) is (Eq. (A.31))

𝑇Σ =
𝑇𝐿 + 1

Ste

(

1 − 𝑒𝐾(3𝐿∕2)) + 2 Le 𝑇0
�̇�′′𝐿

𝑘𝑙
𝑘𝑔

(

𝑒𝐾(3𝐿∕2) − 1
)

1 + 2 Le
�̇�′′𝐿

𝑘𝑙
𝑘𝑔

(

𝑒𝐾(3𝐿∕2) − 1
)

, (56)

where 𝐾 is a function given by

𝐾(𝑥) =
�̇�′′(𝑥 − 𝐿)

Le
, (57)

and where Le is the Lewis number,

Le =
�̃�ref

�̃�ref�̃�𝑔𝑣𝑐𝑝,ref
= Sc

Pr
. (58)

The solution to the temperature field in the liquid phase (0 < 𝑥 ≤ 𝐿∕2) is (Eq. (A.18))

𝑇 (𝑥) =
2(𝑇Σ − 𝑇0)

𝐿
𝑥 + 𝑇0 (59)

and in the gas phase (𝐿∕2 < 𝑥 < 𝐿) the solution is (Eq. (A.18))

𝑇 (𝑥) = 𝑇𝐿𝑒
𝐾(𝑥) + 𝑇Σ

(

1 − 𝑒𝐾(𝑥)) + 1
Ste

(

𝑒𝐾(𝑥) − 1
)

+ 2 Le
�̇�′′𝐿

𝑘𝑙
𝑘𝑔

[

𝑇0
(

1 − 𝑒𝐾(𝑥)) + 𝑇Σ
(

𝑒𝐾(𝑥) − 1
)]

. (60)

The conditions for the test are 𝐿 = 1, Re = 200, Sc = 1, Pr = 0.5, Ste = 0.5, 𝑌𝑣,𝐿 = 0, 𝑌𝑣,𝑠𝑎𝑡 = 0.5, 𝑇0 = 0.7, 𝑇𝐿 = 0.8, 𝜌𝑙∕𝜌𝑔 = 1010, 
𝜇𝑙∕𝜇𝑔 = 4, 𝑐𝑝,𝑙∕𝑐𝑝,𝑔 = 10−9, and 𝑘𝑙∕𝑘𝑔 = 4. Note that 𝜌𝑙∕𝜌𝑔 is made sufficiently large such that the interface is practically stationary 
and 𝑐𝑝,𝑙∕𝑐𝑝,𝑔 is made sufficiently small such that the heat capacities of the liquid and gas phase are of the same order of magnitude. 
To test the convergence properties of the schemes, we performed this test case on three grids 𝑁 = 16, 32, and 64.

Fig. 18 shows the profiles of the vapor mass fraction and temperature compared to the analytical solution on the finest grid 
(𝑁 = 64). The results show that both 𝑌𝑣(𝑥) and 𝑇 (𝑥) are in excellent agreement with the analytical solution. Fig. 18(a) shows that the 
exponential 𝑌𝑣(𝑥) profile (Eq. (55)) is captured for the 1D Stefan flow. Fig. 18(b) shows that the temperature profile 𝑇 (𝑥) is correctly 
computed in both the liquid (𝑥 < 𝐿∕2) and gas (𝑥 ≥ 𝐿∕2) phases. At the interface, the scheme accurately captures the jump in 𝜕𝑇 ∕𝜕𝑥
due to 𝑘𝑙∕𝑘𝑔 ≠ 0. Furthermore, the correct interface temperature 𝑇Σ is predicted, which indicates that the singular source/sink term 
(last term in Eq. (5)) is captured accurately by the discretization presented in Eq. (50).

Table 4 shows the 𝐿1 error of the vapor mass fraction (𝐸𝑌𝑣 ) and temperature (𝐸𝑇 ) profiles as function of the grid spacing Δ𝑥. The 
table shows that the computation of the the vapor mass fraction 𝑌𝑣(𝑥) is between first- and second-order accurate. The computation 
of the temperature 𝑇 (𝑥) is first-order accurate.

4.4.  Spatial convergence: 2D evaporating capillary wave

In this section, we report the results of the spatial convergence rate of the numerical solution for the case when �̇�′′ is fixed to a 
constant value and when �̇�′′ = �̇�′′(𝑌𝑣). In the former case, the continuity Eq. (1) and momentum Eq. (3) are coupled, but the energy 
Eq. (5) is decoupled, whereas, in the latter case, all three equations are fully coupled, 𝑌𝑣 evolves according to Eq. (6), and �̇�′′ is 
computed dynamically via Eq. (2). We chose the 2D capillary wave test case, which has a well-known analytical solution in the 

Fig. 18. Comparison of the numerical and analytical solutions of (a) the vapor mass fraction and (b) the temperature for 1D Stefan flow depicted 
in Fig. 17. The numerical results were obtained for 𝑁 = 64 and are plotted against the analytical solutions, Eqs. (55), (59) and (60).
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Table 4 
𝐿1 error norm of the vapor mass fraction and temperature as a function of the grid spacing 
Δ𝑥 for the 1D Stefan flow depicted in Fig. 17.

Δ𝑥 𝐸𝑌𝑣  Rate 𝐸𝑇  Rate
 1/16  2.22e-5  –  1.83e-3  –
 1/32  5.30e-6  2.09  9.52e-4  0.97
 1/64  1.27e-6  2.09  4.81e-4  0.99

Fig. 19. Time development of the capillary wave amplitude for different mesh resolutions and �̇�′′ constant.

absence of phase change [41]. Instead of pursuing an analytical solution of the vaporizing capillary wave, we have computed the 
convergence rate by computing the difference between successive solutions.

The problem setup consists of two immsicible fluids separated by an interface that is initialized with a sinusoid with wavelength 
𝜆 and initial wave amplitude 𝐴0. The computational domain is 𝑥 ∈ [0, 1] and 𝑦 ∈ [0, 1] and a uniform mesh is used with equal number 
of grid points in 𝑥 and 𝑦. Periodic boundary conditions are applied in the 𝑥 direction, a wall boundary condition is used at 𝑦 = 0 and 
an outflow boundary condition at 𝑦 = 1. The first case we consider is for �̇�′′ constant. The physical parameters are Re = 50, We = 0.02, 
Sc = 1, 𝜌𝑙∕𝜌𝑔 = 10, 𝜇𝑙∕𝜇𝑔 = 1, �̇�′′ = 25, and 𝐴0 = 0.01. We performed four test-cases in the which the number of grid points in each 
direction is 𝑁 = 32, 64, 128, and 256, respectively. The time step is limited by the period of the shortest numerical capillary wave 
and is set as Δ𝑡∕Δ𝑥 = 0.005, where Δ𝑥 = 1∕𝑁 .

Fig. 19 shows the amplitude of the capillary wave for increasing number of grid points. The results show that the capillary wave 
oscillates and recedes simultaneously due to phase change. The figure also shows that the numerical solution converges. To quantify 
the convergence rate, we compute the 𝐿1 norm of the difference between successive solutions of 𝑢, 𝑣, and 𝐴. The 𝐿2 norms and 
associated convergence rates are reported in Table 5. The table shows that the convergence rates range between 1.19 and 1.95, thus 
the computation of 𝑢, 𝑣, and 𝐴 has an accuracy between first and second order.

The second test case we consider is when �̇�′′ is computed dynamically from the local vapor mass fraction field, �̇�′′ = �̇�′′(𝑌𝑣) as 
described in Section 3.4 using Eq. (32). The physical parameters are Re = 25, We = 0.02, Sc = 1, Pr = 1, Ste = 10, Stec = 7.43 × 10−2, 
𝑇boil = 1.3, 𝜌𝑙∕𝜌𝑔 = 10, 𝜇𝑙∕𝜇𝑔 = 1, 𝑐𝑝,𝑙∕𝑐𝑝,𝑔 = 1, 𝑘𝑙∕𝑘𝑔 = 4, and 𝑀𝑣∕𝑀𝑎 = 1, and 𝐴0 = 0.01. The meshes and time step used for this second 
test case are identical to those adopted for the first test case in which �̇�′′ was kept constant.

Fig. 20 shows the amplitude of the capillary wave for increasing 𝑁 . The results are very similar to the first case in this section 
when �̇�′′ was constant. Table 6 shows the 𝐿2 norm of the difference between successive solutions and convergence rates for 𝑢, 𝑣, 𝑌𝑣, 
and 𝑇 . The table shows that the convergence rates range from 0.99 to 2.11, thus, showing that all quantities (𝑢, 𝑣, 𝑌𝑣, and 𝑇 ) are 
computed with an accuracy that is between first and second order.

Table 5 
𝐿2 norm of the difference between successive solutions of 𝑢 and 𝑣 components of velocity (𝐸𝑢 and 𝐸𝑣) and the amplitude 𝐴
of the capillary wave (𝐸𝐴) as a function of the grid spacing Δ𝑥 for �̇�′′ constant at time 𝑡 = 0.5. For example, the second row 
represents the 𝐿1 norm of the difference between the 𝑁 = 64 and 𝑁 = 128 solution.

Δ𝑥 𝐸𝑢  Rate 𝐸𝑣  Rate 𝐸𝐴  Rate
 1/64  9.43e-5  –  4.60e-4  –  9.44e-5  –
 1/128  2.69e-5  1.75  1.61e-4  1.43  2.13e-5  2.22
 1/256  9.88e-6  1.36  6.01e-5  1.34  5.56e-6  1.91
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Fig. 20. Time development of the capillary wave amplitude for different mesh resolutions and �̇�′′ = �̇�′′(𝑌𝑣).

Table 6 
𝐿2 norm of the difference between successive solutions of the 𝑢 and 𝑣 components of velocity (𝐸𝑢 and 𝐸𝑣), the capillary wave amplitude 
𝐴 (𝐸𝐴), the vapor mass fraction 𝑌𝑣 (𝐸𝑌𝑣 ), and temperature 𝑇  (𝐸𝑇 ) as a function of the grid spacing Δ𝑥 for �̇�′′ = �̇�′′(𝑌𝑣) computed using 
Eq. (32) at time 𝑡 = 0.5.

Δ𝑥 𝐸𝑢  Rate 𝐸𝑣  Rate 𝐸𝑌𝑣  Rate 𝐸𝑇  Rate
 1/64  9.18e-5  –  1.51e-3  –  3.98e-5  –  7.81e-7  –
 1/128  3.82e-5  1.20  5.64e-4  1.34  1.42e-5  1.41  3.69e-7  1.06
 1/256  1.81e-5  1.05  3.33e-4  0.85  5.15e-6  1.37  9.90e-8  1.87

4.5.  Verification of fully coupled solver: 3D evaporating droplet at rest

In this section, we verify the fully-coupled solver (as illustrated in Fig. 3) by solving the governing Eq. (1), (3), (5), and (6) with 
the method described in Section 3 for an isolated liquid fuel droplet undergoing evaporation. We compare the numerical results to 
the 𝐷2 law [42,43].

We consider a spherical decane droplet in a cubic domain. Periodic boundary conditions are applied in the two horizontal directions 
and outflow boundary conditions are applied in the vertical direction. Initially, the gas and liquid velocities are zero, the temperature 
field is uniform, and the gas phase is devoid of vapor. In our simulation, the domain has length �̃� = 320 𝜇m on all sides, the initial 
droplet diameter is �̃�0 = 20 𝜇m, and 2563 grid points. The parameters and initial conditions are Re = 200, Sc = 0.33, Pr = 0.69, Ste =
1.19, Stec = 6.82 × 10−2, �̃�boil = 557.15 K, �̃�𝑙 = �̃�𝑔 = 400 K, 𝜌𝑙∕𝜌𝑔 = 79.19, 𝜇𝑙∕𝜇𝑔 = 18.4, 𝑐𝑝,𝑙∕𝑐𝑝,𝑔 = 2.42, 𝑘𝑙∕𝑘𝑔 = 4.316, and 𝑀𝑣∕𝑀𝑎 = 4.91. 
For this fully-coupled 3D simulation, we set a tolerance of 10−7 for the linear solver in the velocity extension routines (Section 3.3). 
This larger tolerance was chosen to obtain a speedup of the numerical solution. Since the tolerance was set to 10−7, then, the mass 
conservation error is approximately 10−7, as the accuracy of the VoF method depends on the accuracy of the discrete divergence-free 
condition of the extended liquid velocity field. This choice maintains numerical stability and the prescribed accuracy, as discussed in 
Section 3.3.

To verify the accuracy of the simulation we compute the mean Sherwood number of the droplet as a function of time, and compare 
it to the exact, steady-state solution for a static 3D sphere. The droplet Sherwood number is calculated as

Sh(𝑡) = Re Sc 𝐷(𝑡) ℎmass(𝑡), (61)

where 𝐷(𝑡) is the droplet diameter, and ℎmass(𝑡) is the average mass transfer coefficient calculated as

ℎmass(𝑡) =
�̇�(𝑡)

𝑆(𝑡) 𝜌𝑔(𝑌𝑣,𝑠𝑎𝑡 − 𝑌𝑣,∞)
, (62)

where �̇�(𝑡) is the instantaneous rate of change of droplet mass, 𝑆(𝑡) is the droplet surface area, and 𝑌𝑣,∞ is the vapor mass fraction 
in the far field (a constant).

Fig. 21 shows the time evolution of the Sherwood number (Sh) and the normalized droplet diameter squared (𝐷∕𝐷0)2. Fig. 21(a) 
shows that the Sherwood number is slightly higher than the correct asymptotic solution of Sh=2. Fig. 21(b) shows that after an initial 
transient period, (𝐷∕𝐷0)2 decays linearly in time, which verifies that our simulation follows the 𝐷2-law for the isolated static droplet.

5.  Summary and Conclusions

We have developed FastP∗PC, a coupled volume-of-fluid and pressure-correction flow solver for incompressible gas-liquid flows 
with phase change which is an extension of FastP∗ [26]. The method specifically addresses flows in which the liquid is monocomponent 
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Fig. 21. Comparison of the numerical and analytical solutions for the time evolution of (a) the Sherwood number (b) the normalized droplet 
diameter squared of a vaporizing 3D fuel droplet.

and the gas phase is bicomponent, e.g. a decane droplet evaporating in oxygen. A summary of the main contributions of this work 
follows.

1. A novel method for capturing the gas-liquid interface in the presence of heat and mass transfer within the VoF framework is 
presented (Section 3.2). The main advantage of the approach, compared to existing VoF methods for phase change, is that it does 
not require a projection step of the liquid velocity to divergence-free space nor does it require any ad hoc smoothing or redistri-
bution of volume sources/sinks. To achieve this, the key step was developing a novel divergence-free extrapolation technique of 
the velocity field (Section 3.3).

2. The VoF method achieves mass conservation in the presence of evaporation and condensation, with accuracy determined by the 
choice of tolerance for the divergence-free liquid velocity extension. Practical solver tolerances of 10−7 to 10−10 yield minor mass 
conservation errors while maintaining numerical stability, as shown in Sections 4 and 4.5. Outside the interfacial region, mass is 
conserved to machine precision by using an FFT-based, fast Poisson solver in both phases.

3. A new discretization of the vapor mass conservation equation in the vicinity of the gas-liquid interface is developed (Section 3.5). 
This technique makes it possible to apply a Dirichlet boundary condition with high order of accuracy at the interface.

4. By computing and using the VoF function at staggered grid locations, the flow solver maintains a sharp representation of the 
gas-liquid interface, and yields jumps in velocity and temperature gradient that occur over a distance on the order of one grid cell 
(Section 4.3).

5. A new analytical solution for the 1D Stefan flow problem was derived for a fluid system consisting of a monocomponent-liquid 
and a bicomponent-gas phase Section 4.3. Solutions for the vapor mass fraction Eq. (55), gas temperature Eq. (59), and liquid 
temperature Eq. (60) profiles were shown. This test case will be useful for verifying future two-phase flow solvers that model 
phase change.

We have demonstrated that the VoF advection method can be used to simulate evaporating and condensing droplets. Using a 
normal probe approach that uses second-order Lagrange interpolating polynomials, we have computed the mass flux to second-order 
accuracy. The new approach for applying the Dirichlet boundary condition at the interface was shown to be between first- and 
second-order accurate for computing the vapor mass fraction field. We also tested a 3D evaporating droplet at rest and showed that 
the Sherwood number approached the correct asymptotic value and that the droplet diameter followed the 𝐷2-law. We should note 
that FastP∗ [26] has been successfully tested for density ratios of the order of 104, and that the solution of FastP∗PC agrees to machine 
precision with the analytical solution for the 1D evaporation of the liquid pool for density ratios up to 104, but, for 2D and 3D cases, 
FastP∗PC has been tested to be stable up to density ratios of 500 with mass conserved within (10−7, 10−10).
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Appendix A.  Analytical solution to the 1D non-dimensional internal energy equation during steady-state Stefan flow

In this section we derive the analytical solution to the 1D non-dimensional internal energy equation during steady-state Stefan 
flow. We consider the 1D Stefan flow problem illustrated in Fig. A.1, where the gas phase is denoted by 𝑚 = 𝑔 and the liquid phase 
is denoted by 𝑚 = 𝑙. Dirichlet conditions for vapor mass fraction and temperature are applied at the outflow boundary. At the lower 
wall, a Dirichlet boundary conditions is applied for temperature. At the interface, a Dirichlet boundary condition is applied for the 
saturated vapor mass fraction. We begin with the 1D non-dimensional internal energy equation,

𝜕𝑇𝑚
𝜕𝑡

+ 𝑢
𝜕𝑇𝑚
𝜕𝑥

= 1
RePr

𝑘𝑚
𝜌𝑚𝑐𝑝,𝑚

𝜕2𝑇𝑚
𝜕𝑥2

, for 𝑚 = 𝑔 or 𝑙. (A.1)

At steady state 𝑇𝑚 = 𝑇𝑚(𝑥), so Eq. (A.1) is rewritten as

𝑢𝑚
d𝑇𝑚
d𝑥

= 1
RePr

𝑘𝑚
𝜌𝑚𝑐𝑝,𝑚

𝜕2𝑇𝑚
𝜕𝑥2

, for 𝑚 = 𝑔 or 𝑙. (A.2)

Next, we derive the non-dimensional jump conditions for the heat flux across the interface which will serve as a boundary condition 
at the interface. The jump condition for heat flux in dimensional form is

̃̇𝑚′′ℎ̃𝑙𝑔 = �̃�𝑙
𝜕�̃�𝑙
𝜕�̂�

− �̃�𝑔
𝜕�̃�𝑔
𝜕�̂�

. (A.3)

Fig. A.1. Domain for 1D Stefan flow.
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For the flow problem shown in Fig. A.1, 𝜕
𝜕�̂�

= − d
d𝑥
, so we rewrite Eq. (A.3) as

̃̇𝑚′′ℎ̃𝑙𝑔 = �̃�𝑔
d�̃�𝑔
d�̃�

− �̃�𝑙
d�̃�𝑙
d�̃�

. (A.4)

We introduce the following non-dimensional variables:

�̇�′′ =
̃̇𝑚′′�̃�ref
�̃�𝑔𝑣�̃�ref

, 𝑘 = �̃�
�̃�ref

, 𝑇 = �̃�
�̃�ref

, d
d𝑥

= �̃�ref
d
d�̃�

. (A.5)

Introducing Eq. (A.5) into Eq. (A.4) yields
ℎ̃𝑙𝑔�̃�𝑔𝑣

�̃�ref�̃�ref𝑐𝑝,ref�̃�ref
�̇�′′ =

�̃�ref
�̃�ref�̃�ref�̃�ref𝑐𝑝, ref

(

𝑘𝑔
d𝑇𝑔
d𝑥

− 𝑘𝑙
d𝑇𝑙
d𝑥

)

, (A.6)

and, substituting the non-dimensional quantites from Eqs. (7) and (58) into Eq. (A.6) results in the non-dimensional jump conditions 
for the heat flux:

1
Ste

�̇�′′ = Le
(

𝑘𝑔
d𝑇𝑔
d𝑥

− 𝑘𝑙
d𝑇𝑙
d𝑥

)

. (A.7)

The governing equations for the gas and liquid phases are

Gas: 𝑢𝑔
d𝑇𝑔
d𝑥

= 1
Re Pr

𝑘𝑔
𝜌𝑔𝑐𝑝,𝑔

d2𝑇𝑔
d𝑥2

, (A.8)

Liquid: 0 = 1
Re Pr

𝑘𝑙
𝜌𝑙𝑐𝑝,𝑙

d2𝑇𝑙
d𝑥2

, (A.9)

where the left-hand side of Eq. (A.9) is 0 because 𝑢𝑙 = 0. The boundary conditions for the flow problem are
At 𝑥 = 0; 𝑇𝑙 = 𝑇0, (A.10)

At 𝑥 = 𝐿; 𝑇𝑔 = 𝑇0, (A.11)

At 𝑥 = 𝐿∕2; 𝑇𝑔 = 𝑇𝑙 = 𝑇Σ, (A.12)

At 𝑥 = 𝐿∕2; 1
Ste

�̇�′′ = Le
(

𝑘𝑔
d𝑇𝑔
d𝑥

− 𝑘𝑙
d𝑇𝑙
d𝑥

)

, (A.13)

The solution begins by integrating Eq. (A.9) once with respect to 𝑥:

𝑐1 =
1

Re Pr
𝑘𝑙

d𝑇𝑙
d𝑥

. (A.14)

Eq. (A.14) shows that d𝑇𝑙
d𝑥

 is constant for 0 < 𝑥 < 𝐿∕2. We integrate Eq. (A.14) again with respect to 𝑥 and flip the left and right-hand 
sides to yield

1
Re Pr

𝑘𝑙𝑇𝑙(𝑥) = 𝑐1𝑥 + 𝑐2. (A.15)

Using Eq. (A.14) and Eq. (A.10) and multiplying through by Re Pr
𝑘𝑙

, Eq. (A.15) can be rewritten as

𝑇𝑙(𝑥) =
d𝑇𝑙
d𝑥

𝑥 + 𝑇0. (A.16)

Because d𝑇𝑙
d𝑥

 is constant, applying the boundary conditions in Eqs. (A.10) and (A.12) gives

d𝑇𝑙
d𝑥

=
2
(

𝑇Σ − 𝑇0
)

𝐿
, (A.17)

which when substituted into Eq. (A.16) yields

𝑇𝑙(𝑥) =
2
(

𝑇Σ − 𝑇0
)

𝐿
𝑥 + 𝑇0, for 0 < 𝑥 < 𝐿∕2, (A.18)

which is the result reported in Eq. (59) in Section 4.3.
Next, we consider the gas phase. We begin by noting that

�̃�𝑔 �̃�𝑔 = ̃̇𝑚′′. (A.19)

By substituting non-dimensional values and quantities from Eqs. (7) and (A.5) and dividing through by 𝜌𝑔 , Eq. (A.19) can be rewritten 
as

𝑢𝑔 = 1
Re Sc

�̇�′′

𝜌𝑔
. (A.20)
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Substituting Eq. (A.20) into  (A.8), rearranging terms, and multiplying through by (Re Sc) we obtain

𝑐𝑝,𝑔�̇�
′′ d𝑇𝑔
d𝑥

= Le 𝑘𝑔
d2𝑇𝑔
d𝑥2

, (A.21)

where Le is the Lewis number (Eq. (58)), i.e., Le = Sc∕Pr. We integrate Eq. (A.21) with respect to 𝑥 to obtain

𝑐𝑝,𝑔�̇�
′′𝑇𝑔(𝑥) = Le 𝑘𝑔

d𝑇𝑔
d𝑥

+ 𝑐3. (A.22)

Evaluating Eq. (A.22) at 𝑥 = 𝐿∕2 and applying boundary conditions (A.12) and (A.13) yields

𝑐𝑝,𝑔�̇�
′′𝑇Σ = 1

Ste
�̇�′′ + Le 𝑘𝑙

d𝑇𝑙
d𝑥

|

|

|

|Σ
+ 𝑐3. (A.23)

Solving for 𝑐3 in Eq. (A.23), substituting into Eq. (A.21), and using Eq. (A.17) we obtain

𝑐𝑝,𝑔�̇�
′′𝑇𝑔(𝑥) = Le 𝑘𝑔

d𝑇𝑔
d𝑥

+ �̇�′′
(

𝑐𝑝,𝑔𝑇Σ − 1
Ste

)

− Le 𝑘𝑙
2
(

𝑇Σ − 𝑇0
)

𝐿
. (A.24)

We perform separation of variables to the derivative term of Eq. (A.24) and rearrange terms to yield
d𝑇𝑔

𝑇𝑔(𝑥) +
1
𝑐𝑝,𝑔

( 1
Ste

− 𝑐𝑝,𝑔𝑇Σ
)

+
Le 𝑘𝑙
𝑐𝑝,𝑔�̇�′′

(

2(𝑇Σ − 𝑇0)
𝐿

) =
𝑐𝑝,𝑔�̇�′′

Le 𝑘𝑔
d𝑥. (A.25)

We integrate both sides of Eq. (A.25) to obtain

ln
{

𝑇𝑔(𝑥) +
1
𝑐𝑝,𝑔

( 1
Ste

− 𝑐𝑝,𝑔𝑇Σ
)

+
Le 𝑘𝑙
𝑐𝑝,𝑔�̇�′′

(

2(𝑇Σ − 𝑇0)
𝐿

)}

=
𝑐𝑝,𝑔�̇�′′

Le 𝑘𝑔
𝑥 + 𝑐4 (A.26)

Evaluating Eq. (A.26) at 𝑥 = 𝐿 and applying boundary condition (A.11) yields

ln
{

𝑇𝐿 + 1
𝑐𝑝,𝑔

( 1
Ste

− 𝑐𝑝,𝑔𝑇Σ
)

+
Le 𝑘𝑙
𝑐𝑝,𝑔�̇�′′

(

2(𝑇Σ − 𝑇0)
𝐿

)}

=
𝑐𝑝,𝑔�̇�′′

Le 𝑘𝑔
𝐿 + 𝑐4. (A.27)

Solving for 𝑐4 in Eq. (A.27), substituting into Eq. (A.26) and combining like terms we obtain

ln
{

𝑇𝑔(𝑥) +
1
𝑐𝑝,𝑔

( 1
Ste

− 𝑐𝑝,𝑔𝑇Σ
)

+
Le 𝑘𝑙
𝑐𝑝,𝑔�̇�′′

(

2(𝑇Σ − 𝑇0)
𝐿

)}

=
𝑐𝑝,𝑔�̇�′′

Le 𝑘𝑔
(𝑥 − 𝐿) + ln

{

𝑇𝐿 + 1
𝑐𝑝,𝑔

( 1
Ste

− 𝑐𝑝,𝑔𝑇Σ
)

+
Le 𝑘𝑙
𝑐𝑝,𝑔�̇�′′

(

2(𝑇Σ − 𝑇0)
𝐿

)}

.
(A.28)

Exponentiating both sides of Eq. (A.28) and rearranging terms yields

𝑇𝑔(𝑥) =𝑇𝐿𝑒𝐾(𝑥) + 𝑇Σ
(

1 − 𝑒𝐾(𝑥)) + 1
𝑐𝑝,𝑔 Ste

(

𝑒𝐾(𝑥) − 1
)

+
2 Le 𝑘𝑙
𝑐𝑝,𝑔�̇�′′𝐿

[

𝑇Σ
(

𝑒𝐾(𝑥) − 1
)

+ 𝑇0
(

1 − 𝑒𝐾(𝑥))], for 𝐿∕2 < 𝑥 < 𝐿,
(A.29)

where 𝐾(𝑥) =
𝑐𝑝,𝑔�̇�′′

Le 𝑘𝑔
(𝑥 − 𝐿). Assigning the gas phase quantities a unity value, 𝑘𝑔 = 𝑐𝑝,𝑔 = 1, we obtain

𝑇𝑔(𝑥) =𝑇𝐿𝑒𝐾(𝑥) + 𝑇Σ
(

1 − 𝑒𝐾(𝑥)) + 1
Ste

(

𝑒𝐾(𝑥) − 1
)

+ 2 Le
�̇�′′𝐿

𝑘𝑙
𝑘𝑔

[

𝑇0
(

1 − 𝑒𝐾(𝑥)) + 𝑇Σ
(

𝑒𝐾(𝑥) − 1
)]

, for 𝐿∕2 < 𝑥 < 𝐿,
(A.30)

which is the result reported in Eq. (60) in Section 4.3. Lastly, to solve for 𝑇Σ, we evaluate Eq. (A.30) at 𝑥 = 𝐿∕2 and use a symbolic 
solver to yield

𝑇Σ =
𝑇𝐿 + 1

Ste
(

1 − 𝑒𝐾(3𝐿∕2)) +
2 Le 𝑇0
�̇�′′𝐿

𝑘𝑙
𝑘𝑔

(

𝑒𝐾(3𝐿∕2) − 1
)

1 + 2 Le
�̇�′′𝐿

𝑘𝑙
𝑘𝑔

(

𝑒𝐾(3𝐿∕2) − 1
)

, (A.31)

which is the result reported in Eq. (56) in Section 4.3.
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